พารามิเตอร์ด้านสิ่งแวดล้อม-วัตถุเป้าหมาย

ในการวิเคราะห์ภาพถ่ายเรดาร์แล้วนอกจากพารามิเตอร์ของระบบแล้ว พารามิเตอร์ด้านสิ่งแวดล้อมมีความจำเป็นอย่างยิ่ง เพื่อบูรณาการกับระบบเพื่อให้ได้มาซึ่งองค์ความรู้เพื่อเข้าใจปฏิสัมพันธ์ระหว่างระบบเรดาร์กับสิ่งแวดล้อม ในที่นี้จะกล่าวถึงสิ่งแวดล้อมหรือเป้าหมายที่ควรศึกษาในเบื้องต้น คือ ความขรุขระของพื้นที่ (Roughness characteristics) คุณสมบัติไดอิเล็กทริก (Dielectric properties) ความเป็นเหลี่ยมและการเรียงตัวของเป้าหมาย(Angularity and Orientation of the target) ระยะห่างของเป้าหมาย (Target spacing) การทะลุทะลวงของสัญญาณ(Signal penetration) และการเน้นสัญญาณ (Signal enhancement)

1. ลักษณะของความขรุขระ

เมื่อพื้นผิวราบเรียบการสะท้อนของคลื่นเรดาร์จะเป็นแบบกระจกเงา (Specular reflector) คือ มีมุมตกกระทบเท่ากับมุมสะท้อนพลังงานจะสะท้อนไปยังทิศทางอื่นไม่กลับไปยังระบบบันทึก เมื่อพื้นผิวเริ่มขรุขระขึ้นจะมีพลังงานบางส่วนสะท้อนกลับไปยังระบบ เมื่อความขรุขระมากการสะท้อนจะเป็นแบบแพร่กระจาย (Diffuse reflector)

ภาพแสดงลักษณะการสะท้อนคลื่นเรดาร์ที่พื้นผิวลักษณะแตกต่างกัน ที่มา : Henderson, F.M. and Lewis, A.J. (1998)
ภาพแสดงลักษณะการสะท้อนคลื่นเรดาร์ที่พื้นผิวลักษณะแตกต่างกัน
ที่มา : Henderson, F.M. and Lewis, A.J. (1998)

ความขรุขระของพื้นที่อาจมองได้หลายระดับ ได้แก่ ระดับจุลภาค (Microscale) ระดับกลาง(Mesoscale) และระดับมหัพภาค (Macroscale) ในระดับจุลภาคมักจะกำหนดความขรุขระของพื้นเทียบกับความยาวคลื่น ถ้าหากความแปรปรวนโดยเฉลี่ยของพื้นผิวน้อยกว่า 1/8 ของความยาวคลื่นถือว่ามีพื้นผิวเรียบ เช่น ระบบเรดาร์ L-band มีความยาวคลื่น 15 เซนติเมตร พื้นผิวที่ขรุขระ 2 เซนติเมตร ถือว่ามีพื้นผิวที่ราบเรียบ เป็นต้นการวิเคราะห์ในระบบเรดาร์ ถือว่าระดับจุลภาคเป็นระดับสีของภาพ (Image tone) ส่วนในระดับกลางเป็นระดับที่ถือว่าเป็นระดับความหยาบความละเอียดของภาพ (Image texture) ซึ่งเป็นสภาพที่พื้นที่ป่าไม้ที่มีความสูงของต้นไม้สูงต่ำเป็นกลุ่มๆ ทำให้การกระจัดกระจายกลับในบางส่วนมีความสว่างของภาพสูง บางส่วนเกิดเงาซึ่งถือว่าเป็นการจัดเรียงตัวที่ทำให้เกิดลายผิวที่หยาบ ในระดับมหัพภาคเป็นระดับที่สัมพันธ์กับสภาพพื้นที่ที่มีความลาดชันสูง หรือบริเวณภูเขาความลาดชันที่หันหน้าไปยังระบบบันทึกจะมีการกระจายกลับที่รุนแรง ความขรุขระเมื่อปรับเทียบกับความยาวคลื่นมีผลต่อองค์ประกอบของการสะท้อน และกระจัดกระจายกลับ หากมีความขรุขระมากการกระจัดกระจายกลับมากในทางตรงกันข้ามความขรุขระน้อยจะมีการสะท้อนไปทิศทางอื่น

2. คุณสมบัติไดอิเล็กทริก (Dielectric constant)

ค่าคงตัวไดอิเล็กทริก ของวัตถุบนพื้นโลกเมื่อแห้งจะมีค่าตั้งแต่ 3-8 โดยน้ำมีค่าคงตัวไดอิเล็กทริกประมาณ 80 สัญญาณเรดาร์จะถูกกำหนดโดยความชื้นที่อยู่ในดินและพืช การเพิ่มขึ้นของความชื้นทำให้ลดการทะลุทะลวงของคลื่นเรดาร์ วัตถุที่มีค่าคงตัวไดอิเล็กทริกสูง หรือมีความชื้นสูง จะมีการสะท้อนคลื่นเรดาร์สูง หรือมีแนวโน้มที่จะมีการสะท้อนกลับสูง ในกรณีของพื้นน้ำคลื่นเรดาร์ไม่สามารถผ่านทะลุทะลวงน้ำได้ และน้ำที่มีพื้นผิวราบเรียบจะสะท้อนคลื่นเรดาร์เป็นแบบกระจกเงา คือคลื่นไม่กลับไปยังระบบบันทึกจะมีความเข้มของคลื่นต่ำ หรือมีความสว่างของภาพต่ำ หรือสีภาพเป็นสีดำเข้ม ส่วนดินชื้นจะมีการกระจัดกระจายกลับของสัญญาณเรดาร์สูง

3. ความเป็นเหลี่ยมและการเรียงตัวของเป้าหมาย

ในบางครั้งเรียกว่า ตัวสะท้อนมุม (Corner reflectors) วัตถุขนาดเล็กอาจจะมีความสว่างมากในภาพเรดาร์ ซึ่งขึ้นอยู่กับการวางตัวของวัตถุ ตัวสะท้อนมุมที่สำคัญก็คือวัตถุที่มนุษย์สร้างขึ้น เช่น ด้านข้างของอาคาร สะพานรวมกับความสะท้อนจากพื้นถนน เมื่อพื้นผิวของวัตถุสองชนิดทำมุมฉากกันและเปิดสู่เรดาร์ ทำให้เกิดตัวสะท้อนมุมสองหน้า (Dihedral corner reflector) ตัวสะท้อนมุมสองหน้าจะเกิดการสะท้อนกลับอย่างแรง เมื่อพื้นผิวทั้งสองตั้งฉากกับทิศทางของการส่งคลื่นเรดาร์ ความสะท้อนที่แรงที่สุดเกิดขึ้นจากตัวสะท้อนสามหน้า (Trihedral corner reflector) กรณีเช่นนี้เกิดขึ้นเมื่อพื้นผิวทั้งสามตั้งฉากกับทิศทางของการส่งคลื่นเรดาร์ ตัวสะท้อนมุมใช้ประโยชน์ในการบอกตำแหน่งนักวิจัยมักนิยมสร้างตัวสะท้อนมุมไว้เป็นจุดอ้างอิง

ภาพความเป็นเหลี่ยมและการเรียงตัวของเป้าหมาย ที่มา : Henderson, F.M. and Lewis, A.J. (1998)
ภาพความเป็นเหลี่ยมและการเรียงตัวของเป้าหมาย
ที่มา : Henderson, F.M. and Lewis, A.J. (1998)

4. การกระจัดกระจายเชิงปริมาตร (Volume scattering)

การกระจัดกระจายเชิงปริมาตรเป็นการกระจัดกระจายที่มีความสัมพันธ์กับกระบวนการกระจัดกระจายหลายทิศทาง เช่น พืชพรรณที่หนาแน่น ประกอบด้วยความสูงความกว้าง และความยาว การกระจัดกระจายเชิงปริมาตรมีความสำคัญ เพราะว่ามันจะมีอิทธิพลต่อการกระจัดกระจายกลับ เรดาร์จะรับพลังงานกลับทั้งจากการกระจัดกระจายบนพื้นผิวดิน กิ่งไม้ ลำต้น ซึ่งถือว่าเป็นปริมาตรความเข้มของการกระจัดกระจายเชิงปริมาตรขึ้นอยู่กับคุณสมบัติทางกายภาพของปริมาตร (ความแปรปรวนของค่าคงที่ไดอิเล็กทริก) และลักษณะของระบบเรดาร์ (ความยาวคลื่นโพลาไรเซชัน และมุมตกกระทบ)

ภาพการกระจัดกระจายเชิงปริมาตร
ภาพการกระจัดกระจายเชิงปริมาตร

5. การทะลุทะลวงของสัญญาณเรดาร์

คลื่นแม่เหล็กไฟฟ้าที่สั้นมีพลังงานสูงกว่าคลื่นยาว ดังนั้นคลื่นสั้นมีปฏิสัมพันธ์ (Interaction) กับวัตถุมากกว่า จึงมีความสามารถทะลุทะลวงได้น้อยกว่าคลื่นยาว ซึ่งมีปฏิสัมพันธ์กับวัตถุน้อยกว่า คลื่นยาวจะสามารถทะลุทะลวงลงไปในวัตถุได้มากกว่าคลื่นสั้น ในตารางได้แสดงแบนด์เรดาร์ ความยาวคลื่น และความสามารถทะลุทะลวงลงไปในพื้นผิวของพื้นที่

แบนด์เรดาร์

ความยาวคลื่น (ซม.) ความลึกที่ทะลุทะลวง (ซม.)ประมาณ
KXC

S

L

P

135

10

25

50

1

3

5

10

25

50

ที่มา : Henderson, F.M. and Lewis, A.J. (1998)

ความสามารถทะลุทะลวงของคลื่นเรดาร์มีค่าประมาณความยาวคลื่นเรดาร์ เช่น K band มีความยาวคลื่น 1 เซนติเมตร จะมีปฏิสัมพันธ์กับพื้นที่มากและทะลุทะลวง ได้เพียง 1 เซนติเมตร P band ความยาวคลื่น 50 เซนติเมตร สามารถทะลุทะลวงลึกถึง 50 เซนติเมตร เพราะฉะนั้น P band จะให้ข้อมูลที่ระดับความลึก 50 เซนติเมตร อย่างไรก็ตามความสามารถที่ทะลุทะลวง ยังขึ้นกับปัจจัยอื่นๆ อีก เช่น ปริมาณความชื้น หากมีปริมาณน้ำในองค์ประกอบของวัตถุใดๆ มาก ความสามารถทะลุทะลวงก็จะลดลง ดังนั้นจะเห็นได้ว่าความสามารถทะลุทะลวงของคลื่นเรดาร์จะเป็นการบูรณาการพารามิเตอร์ของระบบ และพารามิเตอร์ของวัตถุเป้าหมาย/ สิ่งแวดล้อม

6. การเน้นสัญญาณ

การที่จะเพิ่มการกระจัดกระจายกลับ หรือการเน้นสัญญาณนั้น ทำได้โดยลดความยาวคลื่นที่ส่งออกจากระบบและลดมุมตกกระทบ ในการลดความยาวคลื่นก็จะทำให้ความสามารถทะลุทะลวงลดลง หากต้องการศึกษาใต้พื้นผิวต้องให้คลื่นที่ยาวขึ้น ดังนั้นในการที่จะเน้นสัญญาณต้องมีวัตถุประสงค์ที่แน่ชัดว่าต้องการศึกษาอะไรดังเช่นกรณีที่ต้องการศึกษาพื้นที่น้ำท่วม ซึ่งมีพืชพรรณน้ำคลุมพื้นที่ หากใช้ X band จะให้ข้อมูลพืชพรรณเหนือน้ำ ถ้าใช้คลื่นยาวขึ้น เช่น L band จะได้ข้อมูลน้ำท่วม เป็นต้น

ที่มา : ตำราเทคโนโลยีอวกาศและภูมิสารสนเทศศาสตร์