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ABSTRACT

This paper proposes a new land cover mapping algorithm that
combines the strengths of random forest (RF) with a Markov
random field (MRF) model. The idea is to transform the ob-
served data into the decision domain of weak classifiers inside
an RF. Due to how RF are trained, these decisions can be con-
sidered to be independent from each others, and therefore the
joint probability density function in the decision domain can
be both easily and accurately estimated. For a decision vector
from RF, and under an MRF model, the optimum land cover
map is iteratively searched. The performances of the pro-
posed algorithm were evaluated using a real remote-sensing
image, and we found that the resulting land cover maps are
more accurate than most traditional classifiers in all sizes of
training samples.

Index Terms— Random forest, Markov random field,
land cover mapping, image classification

1. INTRODUCTION

Land cover classification is one of the most important appli-
cations of remote sensing data. There are a lot of land cover
mapping algorithms proposed in the literature [1]-[2]. They
can be broadly categorized into two groups, namely, para-
metric and non-parametric classifiers. The parametric clas-
sifiers depend on various statistical models and provide very
accurate maps if the underlying model represents the actual
data. For instance, Markov random field models have been
used extensively in several land cover mapping problems [1]-
[2] since these models can accurately capture the class de-
pendency among neighboring pixels in the image. However,
one major drawback of parametric classifiers is that the per-
formance can be severely degraded if the actual data do not
agree with the assumed model, especially in characterizing
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the probability distribution of observed spectral colors. In
contrast, the non-parametric approaches [3],[4] where images
are classified through the minimization of a heuristic func-
tion, seem to outperform the parametric classifiers when the
observed data is complex. Among the non-parametric clas-
sifiers, the random forest (RF) [4] developed by combining
several weak decision trees together to form a forest seem to
provide superior performance. The random forest (RF) can
be applied to various types of applications. such as data clas-
sification, image processing and so on. Even though the RF
has produced very promising results in the past, it becomes
very complicated to incorporate the class dependency among
neighboring pixels into the forest.

As a result, this paper will focus on how to combine the
strength of the RF in the discrimination of spectral colors
from different land cover classes, and the MRF in characteriz-
ing class dependency among neighboring pixels. To achieve
this goal, we use the RF to transform the observed image into
a new discrete domain where an observed intensity vector is
replaced by a decision vector from all the weak classifiers in-
side the RF. Due to how RFs are trained, the joint probability
density function (PDF) of a decision vector can be approxi-
mated by the multiplication of the marginal ones. Next, the
MRF model is employed to derive a new energy function un-
der the maximum a posteriori (MAP) criteria, where the mean
field [S] approximation is employed to find the optimum so-
lution.

2. PROBLEM STATEMENT

Let Y be the observed image having M x N pixels and X
be the corresponding land cover map (LCM) of the same size.
Next, let S denote the sets of all the sites (i.e., pixels) be-
longing to both the observed image and the LCM. The ob-
served image is usually represented in a vector form, such
as, y(s)€ RPB, for one pixel s € S where R = {1,2,...,D}
denotes the set of possible digital numbers (e.g., intensity val-



ues) and B is the number of spectral bands. We note here that,
in most practical scenarios, R is assumed to be the set of all
real numbers. Furthermore, let 2:(s) € A be the configuration
(i.e., class label) of LCM at s, where A = {1, ..., L} is the set
of land cover class labels with L as the number of classes. It
is further assumed that the LCM has the MRF property which
can mathematically be represented as

Pr(z(s) [X(S\s)) = Pr(2(s) | X(Ns)) (D

where S\ s is the set of all pixels in S excluding a pixel s, and
N is a set of neighboring pixels of a pixel s. In the context of
land cover classification, this property implies that the same
land cover class is more likely to occur in connected regions
or patches than isolated pixels. It has been shown in [2] that
the marginal PDF of X takes the form of a Gibbs distribution,

i.e.,
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where Z is a normalizing constant, C'is a clique, and Vo (X)
is a Gibbs potential function. A clique is a singleton or any
subsets whose two distinct elements are mutual neighbors [1].
In this paper, we define C as a set of neighboring pixel pairs,
i.e., C = {s,r}, where s and r are neighboring pixels.

We further assume that when the LCM is given, the ob-
served vectors, y(s), from different pixels are statistically
independent, and depend on the underlying class label of a
given pixel. Hence, we can write the conditional PDF of the
observed image given LCM as

[T Pr(y(s)lz(s)) 3)

seS

Pr(Y|X)=

In many papers,[1]-[2], Pr (y(s) |z(s)) is assumed to follow
some simple statistical models that can be described by few
parameters (such as mean vectors and covariance matrices).
One of the most popular models is Gaussian. In practice, the
observed data often do not follow the assumed distribution,
and the resulting land cover maps are clearly sub-optimum.
A better approach is to replace the statistical model with the
histograms. However, in order to estimate histograms accu-
rately, a large number samples must be obtained, which may
not be feasible in most situations.

As aresult, we transform the observed data into a new dis-
crete space. Let W be the transformed image of Y into a new
discrete space where w (s) = f (y(s)) € T'. Here, we assume
thatT" = {1, ..., J} where J is the number of possible values
of w(s). Note that, the transformation may not be one-to-one,
and therefore, some information is lost after transformation.
However, the goal is to classify an image which also maps an
observed image in an even smaller space. As a result, the in-
formation can be lost as long as the transformed vectors asso-
ciated with different land cover classes are clearly separable.
Next, we assume that we have sufficient samples to accurately

estimate the histograms of w for each land cover class. Hence,
the conditional PDF of W given X can be written as

r(WX) = H Pr (w(s) |z(s)) 4)
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3. OPTIMUM SOLUTION

In this paper, the classifier based on the maximum a posteri-
ori (MAP) criterion selects the most likely LCM among all
possible LCMs given the transformed image. The resulting
probability of error is minimum among all other classifiers.
The MAP criterion is expressed as

X = arg max [Pr (X |W)] 5)

By using Bayes’ rule, substituting Eq. (2) and (4) into Eq.
(5), and using the fact that Pr(W') does not depend on X, the
optimum criteria becomes

XPt — arg n}}n [E (X, )] (6)

where

W)= 3 Vo(X) = 3 log (Pr(w(s) la(s)) ()
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4. PROPOSED ALGORITHM

The critical step of solving Eq.(6) is to find a good transfor-
mation between W and Y such that the discriminations of w
between two or more classes are preserved as much as pos-
sible, and the histograms of w can be accurately estimated.
Here, the concept of the RF [4] that creates groups of weak
decision trees is employed, since decision trees are easy and
efficient to train, and the training process does not require any
statistical model.

In the RF, K decision trees are trained from different ran-
dom subsets of training samples where the sizes of the ran-
dom subsets are smaller than the total number of training sam-
ples. In this case, different trees have different learning expe-
riences, and make decisions almost independently from each
other. Even though each decision tree may not be accurate,
the aggregated decision is quite accurate [4]. In literature, the
majority vote rule is often applied.

Let di(y) € A be a decision from the i*" decision tree.
For a given pixel s, the number of possible outcomes from the
random forest is L. Thus, we can define

de

Hence, the number of possible values of w is LX. Of course,
the possible values of w increase rapidly as the number of de-
cision trees increases, and it can become more than the pos-
sible values of the observed vectors, y(s). Due to the near-
independence nature of each decision tree in an RF, the condi-
tional PDF of w, given the underlying land cover classes, can

Lk 1 (8)



be approximated as the product of condition PDFs of each
decision tree, i.e.,

k
wl) ~H (dr, |z) ©9)

such that w = Zszl dp L¥~1. Here and throughout the rest
of the paper, we omit s for the sake of abbreviation. The only
remaining part is to estimate Pr (dj, | ). Luckily, in the con-
struction of random forest (RF), a portion of training samples
is reserved as the out-of-bag [4] samples. These out-of-bag
samples are used to examine the performance of the RF and
determine the number of decision trees, K. Hence, we can
use these out-of-bag samples to estimate Pr (dj, |z ), and we
have N

Pr(dy |z) ~ 137; (10)
where NV, is the number of out-of-bag samples in Class x, and
Ny 4, is the number of out-of-bag samples in Class « that is
classified into Class dj by the k*® decision tree.

In general, F (X, W) is a non-convex function and, there-
fore, conventional optimization algorithms may not be ap-
plied for the solution of Eq.(6). Furthermore, the number of
possible LCMs is also very large. Therefore, to solve Eq.(6)
within a reasonable computational time, the mean field (MF)
[5] approximation method is applied. The MF approxima-
tion replaces the complex interaction between the neighbor-
ing pixels with the expected values. As a result, the first term
on the right hand side in Eq. (7) can be approximated as

STVeX) =YD Bugy [View (a(s),2(r))] (1)
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where E, () [Vis.y (#(s), z(r))] is the expected value of the
Gibbs potential function for a given configuration at a pixel
s, over the configuration of its neighboring pixel . In this
paper, we define the Gibbs potential function as

Vi eohatry = { 75 102000

where (3 is the Gibbs parameter. It is obvious that

Erry [Visry (@(s),2(r))] = =BPr(a(r) = 2(s))  (13)
Hence, the energy can be rewritten as
W)~ E(a(s),w(s)) (14)
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Our algorithm begins by having an analyst select a suffi-
cient number of training pixels from the observed image. The
majority of training pixels are used to train the RF, and the re-
mainder (out-of-bag samples) are used to estimate Pr (dy, |x)
in Eq.(10). The trained RF are the inputs to the iteration
phase that employs the MF approximation to find the opti-
mum LCM. The iteration phase is given as follows.

1. Use the trained RF to classify the observed image. Let
X be an initial LCM. Set the number of iterations to
be one (h = 1) and assign the value to the Gibbs pa-
rameter, 3.

2. Assign Pr(z(r)
erwise.

=) to one if z¢(r) = [ and to O oth-

3. For all pixels s € S, compute E(z,

all z € A. Recompute Pr (z(s)) =
is a normalizing constant.

) from Eq.(15) for

—E(x,w)

where z,

4. Leth = h+ 1 goto 3 until h > hy,q, Or a termination
criteria is reached.

5. Create the LCM by assigning each pixel s € S to

z(s) = arg rlnea[chr (x(r)=1). (16)

5. EXPERIMENTAL RESULTS

In this section, we examined the performance of the proposed
algorithm on a small dataset of one QuickBird multispectral
image of size 150 x 300 pixels at 2.4m resolution. The mul-
tispectral image consists of four bands: blue, green, red and
near infrared. There are six land cover classes (L. = 6) in
the image: red, white ,blue, green, black and dark green for
Building1, Building2, water, grass, shadow and tree, respec-
tively. Fig. 1 and Fig. 2 display a multispectral and the corre-
sponding ground truth images, respectively. Here, the ground
truth image was manually labeled.

Fig. 1. True color composite of QuickBird image of a part of
Kasetsart University

Next, we randomly selected 10% of the image as a train-
ing set, and applied this training set to the traditional RF al-
gorithm where 1/3 of samples were kept as the out-of-bag
samples. Here, the maximum number of decision trees with a
maximum depth of 15 was set to be 350. The resulting LCM



Fig. 3. The LCM using the traditional RF algorithm [4]

from the traditional RF was shown in Fig. 3. The out-of-bag
samples together with the initial LCM from the traditional
RF algorithm ware submitted to our iteration phase, and the
resulting LCM from our proposed algorithm with 8 = 57.7
was shown in Fig. 4. By visual inspection, it is clear that our
proposed algorithm outperforms the traditional RF algorithm.

To further demonstrate the superiority of our proposed al-
gorithm against traditional approaches, we repeated the ex-
periment 50 times where new sets of training samples were
randomly chosen at each run. These training samples were
used to train six image classification algorithms, namely, the
traditional RF (TRF) [4], decision tree (DT) [3], maximum
likelihood (ML) classifier, MRF classifier (MRF) [2], RF with
unequal weight (RFW), and our proposed algorithm (MR-
FRF). For both ML and MRF, Pr(y|x) was assumed to be
Gaussian. The RFW is our proposed algorithm with 8 = 0.
The averaged classification accuracies over the 50 runs are
provided in Tab. 1 for different sizes of training samples (TS)
ranging from 10% to 100% of the observed image. In all
scenarios, our proposed algorithm outperforms all traditional
approaches, even with § = 0 (RFW). This outstanding per-
formance is due to the ability of our proposed algorithm to
combine the strengths of the RF in describing the observed

Fig. 4. The LCM using the proposed algorithm

Table 1. The percentage of correctly classified pixels as a
function of the size of training samples for different image
classification algorithms

[ TS | TRF | DT [ ML | MRF [ RFW [ MRFRF |

10% | 67.0 | 61.7 | 69.2 | 69.3 | 68.2 | 80.0
30% | 73.9 | 70.3 | 69.0 | 69.0 | 75.3 | 85.6
50% | 78.0 | 74.0 | 69.0 | 69.0 | 79.2 | 89.4
70% | 824 | 77.8 | 69.1 | 69.1 | 83.5 | 92.8
100% | 88.5 | 83.8 | 69.1 | 69.1 | 90.1 | 95.9

data at a given pixel, and the MRF in characterizing the class
dependency among neighboring pixels in the LCM.

6. SUMMARY

We have proposed a new land cover mapping algorithm that
combines the strength of a random forest with a Markov ran-
dom field model. The idea is to map a remote-sensing image
into a new domain such that the observation probability can be
estimated without using any probabilistic models. Since the
random forest classifier contains many weak decision trees,
the new domain used in this paper is a set of decisions de-
rived from all the trees. Furthermore, due to how the decision
trees are trained, the joint probability of these decisions can
be approximated as the multiplication of the marginal proba-
bilities of each individual one. We examined the performance
of our proposed algorithm using a real remote-sensing image
and found that the performance of our algorithm is superior
to the traditional random forest classifier, MRF-approach with
Gaussian model, maximum likelihood classifier under Gaus-
sian model, and decision tree.
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