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Flood disasters are closely associated with an increased risk of infection,
particularly from waterborne diseases. Most studies of waterborne diseases have
relied on the direct determination of pathogens in contaminated water to assess
disease risk. In contrast, this study aims to use an indirect assessment that
employs a back propagation neural network (BPNN) for modelling diarrheal
outbreaks using data from remote sensing and dissolved-oxygen (DO)
measurements to reduce cost and time. Our study area is in Ayutthaya province,
which was very severely affected by the catastrophic 2011 Thailand flood. BPNN
was used to model the relationships among the parameters of the flood and the
water quality and the risk of people becoming infected. Radarsat-2 scenes were
utilized to estimate flood area and duration, while the flood water quality was
derived from the interpolation of DO samples. The risk-ratio function was
applied to the diarrheal morbidity to define the level of outbreak detection and
the outbreak periods. Tests of the BPNN prediction model produced high
prediction accuracy of diarrheal-outbreak risk with low prediction error and a
high degree of correlation. With the promising accuracy of our approach,
decision-makers can plan rapid and comprehensively preventive measures and
countermeasures in advance.

1. Introduction

When floods occur, people in inundated areas frequently face epidemics of water-
borne infectious diseases (Schwartz et al. 2006). Dirty flood water contaminated
with pathogenic microorganisms is a key factor causing people to become infected.
In general, we become aware of outbreaks by the surveillance of the increasing num-
bers of patients in hospitals. This indicates that the diseases have already spread by
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the time we detect the epidemic. Therefore, a number of papers have attempted to
assess the disease risk to predict and prevent outbreaks during and after flooding
(Lleo 2009; Kazama et al. 2012; Yomwan et al. 2012).

For detecting and assessing the risk of waterborne disease, most studies have pro-
posed the direct measurement of pathogens, particularly Escherichia coli (E. coli)
and faecal coliform bacteria, in contaminated drinking water based on a quantitative
microbial risk assessment (QMRA) (Howard et al. 2006). However, such studies
rarely report the spatial distribution of the risk, because QMRA requires a compli-
cated and time-consuming laboratory analysis and so cannot easily be applied to a
large number of spatially distributed samples. Dissolved oxygen (DO) is a simpler
indicator of water quality that has been very widely used to assess water quality
(Kannel et al. 2007). DO values can be used to indicate the degree of pollution by
organic matter and the level of self-purification of the water (Massoud 2012). A num-
ber of studies expressed a close relationship between DO and diarrheal pathogens,
such as faecal coliform bacteria, E. coli, and Vibrio cholerae (Kersters et al. 1995;
Islam et al. 2007; Osode & Okoh 2010; Massoud 2012). In particular, Osode & Okoh
(2010) revealed that DO negatively correlated with E. coli densities (P < 0.001). The
use of DO instead of parameters of the pathogens as an indicator of the water-quality
surveillance system, as in many countries including Thailand (Boonsoong et al.
2010), can more comprehensively model the risk of waterborne disease for spatial
analysis with up-to-date water-quality data.

Remote sensing (RS) has been used to detect and analyse environmental factors
for several decades (Herbreteau et al. 2007; Schumann et al. 2009; Cao et al. 2010b).
Despite the 30 years of improvements in the use and accessibility of multi-temporal
satellite-derived environmental data, RS has been used for studying the dynamics of
environmentally dependent diseases such as waterborne diseases only as recently as
2007 (leptospirosis and flooding; water poisoning) (Herbreteau et al. 2007). In recent
years, the improvement of satellite sensors has led a number of researchers to utilize
their data for assessing the risk of waterborne disease (Lleo 2009; Cao et al. 2012). A
variety of studies have applied earth-observing satellites and geographic information
system (GIS) modelling for the surveillance and modelling of waterborne disease.
For example, Constantin de Magny et al. (2008) developed a prediction model for
cholera by utilizing satellite sensors to measure chlorophyll  concentration and sea-
surface temperature. Ford et al. (2009) used satellite images of environmental
changes to model cholera outbreaks. Tran et al. (2010) analysed satellite images for
water detection and focused on the main variables that influence the survival of avian
influenza viruses in water. However, the first relevant studies of disease risk in flood
disasters only appeared in 2012 (Kazama et al. 2012; Yomwan et al. 2012), which
examined the use of spatial-information technologies for assessing the risk of water-
borne infectious disease. Because their studies employed the integration of flood
parameters into the QMRA model, they still needed a directly measured pathogen
parameter.

To utilize RS data for assessing the risk of waterborne disease during a flood disas-
ter, we need to find the correlation between flood parameters derived from RS data
and infections of waterborne diseases. Neural networks, algorithms in a machine-
learning technique, are powerful mechanisms for inferring relationships and building
models to represent the correlation between input and output parameters (Lee &
Hsiung 2009). The back propagation neural network (BPNN) approach, i.e. multi-
layer perceptron (MLP) with back propagation, is considered one of the most
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effective types of neural network (Kanevski et al. 2004). BPNN has the ability to dis-
cover patterns in data and provide assessments of uncertainty and risk (Maimon &
Rokach 2010) and can be a powerful tool for assessing uncertainties in epidemics or
disasters (Kanevski et al. 2004; Bai & Jin 2005). Numerous papers have thus
combined spatial-information technologies with the BPNN approach to estimate
uncertainty and spatial variability. For example, Kanevski et al. (2004) created a
hybrid model of machine learning based on MLP and support-vector regression
machine-learning algorithms combined with geostatistical tools for predicting the
concentration of a radioactive element in the Bryansk region. Chang et al. (2010)
used a two-stage clustering-based hybrid inundation model composed of linear-
regression models and BPNN to build a regional flood-forecasting system. Cao et al.
(2010a) estimated the potential epidemic risk after the Wenchuan earthquake by
constructing a BPNN model based on RS technology and GIS. However, there is no
study that has used a machine-learning technique to model the risk of disease
outbreak due to floods based on RS data.

Using BPNN, we can create learning models that can utilize flood parameters
derived from RS and simple water properties relating to people in inundated areas,
who may possibly become infected through ingestion of, or contact with, polluted
water. In 2011, Thailand faced its most severe flood disaster in 50 years during the
monsoon season (Rakwatin et al. 2013). Over 14 million people were affected
between July and December. The Bureau of Epidemiology of Thailand reported
many severe outbreaks of infectious disease, including diarrhea, fever, pneumonia,
conjunctivitis, dengue fever, leptospirosis, and hand-foot-mouth disease. Their
report showed that the infection rate for diarrhea had the largest increase.

This study applies a BPNN algorithm to model and predict diarrheal outbreaks
due to flooding based on RS and DO in Ayutthaya province, an area that was very
severely affected by the 2011 Thailand major flood. The input parameters for the
model consist of flood duration, DO, and population density. The reference outbreak
risk for validating BPNN model prediction was derived from the diarrheal morbidity
rate (incidence rate) reported by hospitals in the study area during flooding. The pre-
diction model and the map of disease risk can assist decision-makers in planning
advance preventive measures by using spatial analysis.

2. Materials and methods
2.1. Study area

Thailand faced its most severe flood disaster in 50 years during the monsoon season
in 2011. The Thai government has estimated the flood damage at around $41.2 bil-
lion (Rakwatin et al. 2013). This flood inundated 65 of Thailand’s 77 provinces.
Between July and December, over 14 million people were affected, and 756 people
were killed. Ayutthaya province, located in the Chao Phraya river basin, was one of
the most severely affected provinces. Meanwhile, the Bureau of Epidemiology of
Thailand reported that Ayutthaya faced outbreaks of infectious disease during the
flood disaster, especially diarrhea.

Our study area consists of eight districts in Ayutthaya: Phra Nakhon Si Ayudhya,
Bang Chai, Bang Pa-in, Bang Pahan, Bang Ban, Sena, Bang Sai, and Uthai, as
shown in figure 1(c). The area covers 1423.28 square kilometres with a population
currently estimated at 484,439. Because the area has an extensive network of rivers
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Figure 1. (a) The study area located in the Chao Phraya river basin in central Thailand that
was very severely affected from the 2011 Thailand major flood. (b) The river and canal
network in the study area. (¢) The spatial distribution of the population density in the eight
districts of the study area.

and canals, as shown in figure 1(b), it is affected by flooding during the monsoon sea-
son almost every year.

2.2. Data-sets

With the advantages of synthetic aperture radar (SAR) data for water-body extrac-
tion and cloud penetration (Schumann et al. 2009), RS data used in this study is a
time series of the Radarsat-2 data-set. Radarsat-2, the second in a series of Canadian
spaceborne SAR satellites launched in 2007, has a single-sensor polarimetric C-band
SAR (5.405 GHz) with multiple polarization modes (HH, HV, VV, and VH) and has
a sun-synchronous orbit at an altitude of 798 km with a 6 PM ascending node and a
6 AM descending node. Radarsat-2 has the capability of routine left- and right-look-
ing operation (the right-looking mode for the default operation and the left-looking
mode for improved monitoring efficiencies in case of emergency imaging requests
and for regions not covered in the right-looking mode, e.g. Antarctica). In this study,
six Radarsat-2 scenes of 50-m resolution with the ScanSAR narrow mode
were acquired on (1) 9 September 2011, (2) 3 October 2011, (3) 21 October 2011,
(4) 14 November 2011, (5) 4 December 2011, and (6) 28 December 2011.

The DO values were derived from 186 flood-water samples collected by the Pollu-
tion Control Department of Thailand during the flood. The census data of each com-
munity in the study area were utilized to calculate population density, as shown in
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figure 1(¢). The weekly surveillance reports of diarrheal patients obtained from the
Bureau of Epidemiology of Thailand in Ayutthaya were employed to measure the
outbreak risk and serve as the reference for the model predictions in this study.

2.3. Radarsat-2-derived flooded area

In this study, the flooded area was extracted from SAR imagery. SAR has significant
advantages for the detection of water bodies and can penetrate clouds (Schumann
et al. 2009). Radarsat is in operational use for flood monitoring in many countries
(Brisco et al. 2008). It has been shown to accurately assess and clarify inundated
areas. Moreover, its ability to penetrate clouds is very important for monitoring
floods during the rainy season in monsoon countries (Hoque et al. 2011). Radarsat-2
is the second in a series of Canadian spaceborne SAR satellites that provides several
improvements over Radarsat-1, such as additional beam modes, higher resolution,
multi-polarization, and more-frequent revisits.

Our time series of Radarsat-2 scenes with 50-m resolution in ScanSAR narrow
mode, acquired from September to December 2011, was manually orthorectified
with topographic base maps, and the nearest-neighbour method was used to preserve
original values in the re-sampling process. The Universal Transverse Mercator zone
47 was defined as the image-to-map projection. The acceptable threshold of the root
mean square (RMS) error was set to one pixel due to limited human resources and
time constraints (Rakwatin et al. 2013), and this error was considered as a buffer
applied to the extraction process for areas of water bodies.

The most widely used adaptive filters based on the spatial domain to reduce the
speckle noise in the SAR images include the Lee, Frost, Enfrost, Kuan, Median, and
Gamma filters (Matgen et al. 2007). Using trial and error with visualization, we
applied the 5 x 5 Kuan filter to reduce the speckle noise for our Radarsat-2 images
(Gupta & Gupta 2007; Matgen et al. 2007). Based on the criterion of minimum
mean square error, the Kuan filter applies a spatial filter to each pixel that is replaced
with a value calculated based on the local statistics and can reduce speckle while pre-
serving edges by transforming the multiplicative noise model into an additive noise
model (Kuan et al. 1985; Shi & Fung 1994).

Histogram thresholding (Hostache et al. 2009) and visual interpretation (Obersta-
dler et al. 1997) are popular methods for delineating flooded areas based on SAR
data. We therefore employed a combination of these two methods in this study
(Rakwatin et al. 2013). An appropriate threshold was chosen by visual inspection of
the image histogram (Matgen et al. 2007). Threshold values were manually selected
for each image individually using visual interpretation to label areas as flooded or
dry. To avoid misidentification due to radar backscattering from asphalt roads and
permanent water bodies that may appear similar to inundated areas (Badji & Dautre-
bande 1997), we utilized GIS layers that included road and hydrographic features to
overlay with the extracted water map (Waisurasingha et al. 2008). The output flood
map was validated with ground data such as the reports of flood-relief officers and
broadcast news, which were collected by the Geo-Informatics and Space Technology
Development Agency (GISTDA) (Rakwatin et al. 2013) to classify each pixel as
‘flood’ or ‘non-flood’.

The resulting flooded areas in six Radarsat-2 scenes, illustrated in figure 2, show
that flooding began approximately on 9 September (figure 2(a)), and continuously
increased on 3 October (figure 2(h)) and 21 October (figure 2(c)) until its peak on
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Figure 2. Flooded areas delineated from a Radarsat-2 time series from September to
December 2011. The inundated area continuously increased on 9 September («), 3 October (b),
and 21 October (¢), peaked on 14 November (), and gradually abated on 4 December (¢) and
28 December (f).

14 November (figure 2(d)). Subsequently, the flood gradually abated on 4 December
(figure 2(e)) and 28 December (figure 2(f)). The calculated flooded area of each scene
is also illustrated in figure 3(a).

2.4. Inverse distance weighting for spatial distribution

We used the inverse distance weighting (IDW) function, one of the most frequently
used deterministic models in spatial interpolation (Chen & Liu 2012; Srivastava et al.
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Figure 3. Relationship between flooding at various times in 2011 (¢) and the weekly
morbidity rate (IRR) of diarrhea with a median level of outbreak detection (b), including the
two main periods of diarrheal outbreak in 2011.

2012a; Srivastava et al. 2012b; Teegavarapu et al. 2012), to interpolate the spatial
distribution of DO in the study area. IDW is relatively fast and easy to compute and
straightforward to interpret. Its general concept is based on the assumption that the
attribute value of an unsampled point is the weighted average of nearby known val-
ues, and the weights are inversely related to the distances between the sampled and
predicted locations. Furthermore, flooding covered the entire study area at its peak.
Therefore, it is plausible to consider the study area as a continuous surface and to
use IDW for interpolating the spatial distribution of DO samples in the entire study
area. The basic calculations for IDW (Lu & Wong 2008) are expressed in equations

~

(1) and (2). In equation (1), IDW estimates the unknown value 7(Sp) in location Sy

given the observed y values at sampled locations S;. The estimated value in S is a lin-
ear combination of the weights (/;) and observed y values in S..

v (So) = M»QQ@ (1)

i=1
n
i =d3/ Mu o with > ") =1 (2)
i

In equation (2), the numerator is the inverse of the distance () between Sy and S;
with a power «, and the denominator is the sum of all inverse-distance weights for all
locations 7 so that the sum of all Z; for an unsampled point will be unity.
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2.5. Measure of disease risk

The risk of contracting an illness can be expressed as the probability of infection or
illness during a defined time period or may be attributed to an exposure. Analytical
studies can provide a direct estimate of individual risk, and the incidence of illness
among the unexposed and exposed can be directly compared. The basic measures
generally used are the risk or rate difference, incidence rate ratio (IRR), cumulative
incidence ratio, or odds ratio (Craun et al. 2006). To determine IRR of diarrhea due
to flooding, we adapted the IRR equation from the CDC (2012) as expressed in equa-
tion (3) by defining the time period based on flood duration and letting a constant,
which transforms the result of the division into a uniform quantity (1), equal 5 for fit-
ting with the number of patients in our study. The resulting weekly IRR (cases per
10° people) illustrated in figure 3(b) was calculated from the weekly report of diar-
rheal patients from hospitals in the study area.

’ New cases occurring during a given time period
Incidence rate ratio (IRR) = — . . ; — x 10"
( ) Size of population during the same time period

(3)

In comparing the rates of disease of two groups, the relative risk, or risk ratio (RR),
is widely used to compare the disease rates that differ by demographic characteristics
or exposure histories as shown in equation (4) (Craun et al. 2006; CDC 2012). In this
study, RR was employed to define the risk of diarrheal outbreak due to flooding by
comparing the IRR of diarrhea during floods with the median IRR of diarrhea in the
study area in 2011.

risk for group of primary interest
risk for comparison group

(4)

Risk ratio =

2.6. BPNN

Artificial neural networks (ANNSs) are an important class of tools for quantitative
modelling. One of the powerful characteristics of ANNSs is the ability to learn rela-
tionships between inputs and outputs via training (Bai & Jin 2005). After the training
process, the neural network can give correct answers not only for learned examples,
but also for inputs similar to the learned examples. The ANN approach is suitable
for solving large, non-linear, and complex problems of classification and functional
approximation (Srivastava et al. 2013). BPNN, i.e. MLP with back propagation, is
the most popular type of ANN (Han & Kamber 2006; Lee & Hsiung 2009). BPNN
has been used to assess uncertainties in epidemics or disasters in many studies
(Kanevski et al. 2004; Bai & Jin 2005; Cao et al. 2010a).

The MLP configuration consists of three basic layers of interconnected neurons
(input layer, hidden layers, and output layer). Each connection has a weight associ-
ated with it, as illustrated in figure 4.

BPNN or MLP with the back propagation approach has two main steps: input
feed forward, i.e. multi-layer feed-forward network (Witten & Frank 2005; Maimon
& Rokach 2010), and back propagation. The input units are fed by the relational
database (a collection of tables). Each table consists of a set of attributes (columns
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Figure 4. The typical structure of BPNN including the three basic layers (input, hidden, and
output layers) and the two main steps (input feed-forward network and back propagation)
adapted from Lee and Hsiung (2009) and Han and Kamber (2006).

or fields) and usually stores a large set of tuples (records or rows). Each tuple in a
relational table represents an object identified by a unique key and described by a set
of attribute values. Each training example consists of a tuple of values, one value for
each input dimension in the problem. During training, the tuples are fed into the net-
work, along with the correct outputs (target values). To propagate the inputs for-
ward, the training tuple is fed to the input layer of the network, one value per neuron
in the input layer. For each tuple X, the network modifies weights to values that min-
imize the mean square error between the network prediction and the actual target
value. The net input to a unit in the hidden or output layers is computed as a linear
combination of its inputs. To compute the net input to the unit, each input connected
to the unit in the next layer is multiplied by its corresponding weight and is then
summed. Given a unit j in a hidden or output layer, the net input, J;, to unit j can be
expressed in equation (5) (Han & Kamber 2006).

= Z“’ijof +6; (3)

where w;; is the weight of the connection from unit 7 in the previous layer to unit j, O;
1s the output of unit  from the previous layer, and 6, is the bias of the unit.

In the back-propagation step, the error is propagated backward by updating the
weights and biases to reflect the error of the network prediction. To compute the
error of a hidden layer unit /, the weighted sum of the errors of the units connected
to unit / in the next layer is considered. The error of a hidden layer unit j is shown in
equation (6) (Han & Kamber 2006).

Err; = 0;(1 - 0)) > Errjwy (6)
k
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where O; is the actual output of unit j, wy is the weight of the connection from unit ;
to a unit k in the next higher layer, and Erry is the error of unit 4.

In this study, we used measures of flood duration, DO, and population density at
various locations as the input dimensions, and they were normalized to lie in a fixed
range, from zero to one, by subtracting the minimum value and dividing by the range
between the maximum and the minimum values (Witten & Frank 2005). With the
best spatial resolution of our input parameters, which were the 50-m Radarsat-2
data, each tuple fed into the network was defined as each centre point of a 50-m grid
(point-based), and each value for each input dimension was determined by the pixel
value of flood duration, DO, and population-density map in which its tuple fell. We
used the RR of outbreak based on surveillance reports as reference data for training.
After the model was trained, we used it to predict RR for a new set of tuples.

3. Results and discussion
3.1. Flood duration

We obtained the flood duration in each area by comparing the maps of the flooded
areas, which were derived from the six multi-temporal Radarsat-2 scenes. The flood-
duration map in figure 5 shows that the inundated area covered the entire study area
at its peak. The longest inundated period was over 4 months, while the shortest was
barely 1 week. As a first priority, the Thai government and private sectors aimed to
prevent or reduce the water level in urban areas, along transportation routes and in
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Figure 5. Flood duration estimated from a time series of Radarsat-2 scenes.
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residential and industrial areas, by draining flood water into agricultural areas, par-
ticularly rice fields, which are frequently located in low-lying areas. Therefore, the
arcas with the longest flood durations tend to be agricultural areas.

3.2. Spatial distribution of DO

In a flood disaster, faecal coliform bacteria or E. coli are common causes of diarrhea
because the flooding washes faecal material from human habitats, causing increased
transmission of bacterial infection. To investigate waterborne disease, almost all
studies have attempted to determine the presence of pathogens such as bacteria and
viruses in contaminated water based on QMRA. Time-consuming laboratory testing
is required to determine the amount of pathogens in each water sample.

DO is an important indicator of river health (the ecological condition of a river)
and is used by regulators as part of the classification scheme for good chemical status
(Williams & Boorman 2012). Therefore, researchers have frequently used DO to
evaluate water quality (Kannel et al. 2007). In addition, DO has a close relationship
to faecal coliform bacteria. Because these bacteria are oxidase negative, if DO
decreases, coliform bacteria frequently increase, and vice versa. In this study, DO
was used as an input factor governing the risk of diarrheal infection of people in
inundated areas. We obtained 186 DO samples from the Pollution Control Depart-
ment of Thailand, which were taken during flooding, as shown in figure 6.

100"20°E 100"30°E 100°40°E

14°30'N

14°30'N

14°20°N
14°20'N

Interpolated DO

(mg/)
H ~ High : 6.60 E
: :
Low: 0.37
® DO samples
100°20°E 100°30°E 100°40°E

Figure 6. The spatial distribution of dissolved oxygen (DO) estimated from 186 flood-water
samples based on inverse distance weighting (IDW).
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Table 1. The risk ratio (RR) of diarrheal outbreak due to flooding and the related parameters
for the eight districts in the study area.

Population Mean

Area density  flood duration Mean DO Diarrheal Risk
District Population (km?) (people/kmz) (days) (mg/l) morbidity ratio
Sena 66,122 215.28 307.14 67 3.6 716 1.48
Bang Ban 34379  136.75 251.40 53 3.9 183 1.45
Uthai 46,540 170.62 272.77 40 3.3 462 1.32
Bang Sai 19.685 164.72 119.51 75 4.3 138 1.23
Bang Pa-in 90,188 237.10 380.38 35 3.0 711 1.15
Phra Nakhon 139,129 117.82  1180.86 30 3.6 1651 1.14

Si Ayudhya

Bang Chai 47,083  250.03 188.31 44 3.9 292 0.99
Bang Pahan 41,313 130.96 315.46 44 37 195 0.82

As discussed above, we used IDW to interpolate these point measures into a con-
tinuous grid. The resulting map after interpolation, shown in figure 6, illustrates the
DO spatial distribution. Higher DO values indicate better water quality. Thus, the
redder areas in figure 6 have poorer water quality. Overlaying the water-quality map
on a land-use layer, we found that the intensely red area on the bottom right of
figure 6 is the location of major industrial estates in Bang Pa-in. The faecal and
chemical materials leaking from industrial factories caused a very low value of DO in
this area. The best water quality, with the highest values of DO, was mostly located
in the countryside or in agricultural areas. The mean value of DO of each district is
given in table 1.

The RMS cross-validation error (Joseph & Kang 2011), which is an assessment of
the uncertainty of the IDW interpolation of the DO spatial distribution, is 0.078 mg/l,
while the resolutions of the DO meters or the average standard errors of our DO
measurements range from 0.01 to 0.10 mg/l. The similarity between the interpolation
error and the measurement error indicates that we are correctly assessing the variabil-
ity in the interpolation.

3.3. Detection of diarrheal outbreak

In this study, we want to detect outbreaks of diarrhea. However, there is no generally
accepted number or percentage increase of cases that defines an outbreak or epidemic
(Craun et al. 2006). What public health officials consider is usually based on previous
surveillance, with an outbreak identified when the number of cases is greater than
expected for a specific disease or set of symptoms in that area. The IRR of an out-
break period is expected to be higher than that for other periods in the same area.
For this study, we set the definition of diarrheal outbreak (Schwartz et al. 2006) after
plotting the relationship between the weekly flooded area as derived from RS and
the weekly IRR, as shown in figure 3(«) and 3(b), respectively. We defined the onset
of an outbreak during weeks 38-51 in 2011, when the weekly diarrheal morbidity
exceeded the 2011 median for a district or exceeded 50.37 cases per 100,000 popula-
tion for the entire study area.

From figure 3(b), we found that the study area had two main periods of diarrheal
outbreaks in 2011, during weeks 1-11 and 38-51. After interviewing the officers of
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the Ministry of Public Health in Ayutthaya province, we found that the first period
at the beginning of the year was probably a result of the long celebrations during the
New Year festival, from frequent alcohol consumption or ingestion of unhygienic
food. Therefore, we concentrated on the second outbreak occurring during the flood.
A comparison of figure 3(a) and 3(b) demonstrated that there was a very close rela-
tionship between the flooded area and outbreak intensity. Flooding started, peaked,
and abated in weeks 36, 46, and 52, respectively, and the second outbreak period
started in week 38. Although the IRR values in weeks 39, 40, and 43 were lower than
the outbreak detection level, it peaked in week 46 and, like the water, also abated in
week 52.

To estimate the risk of diarrheal outbreak due to flooding for each district, the RR
was used to compare the IRR of weekly morbidity with the outbreak detection level
or the median of weekly morbidity. An RR less than or equal to 1 indicates no out-
break or no risk. Otherwise, it indicates the possibility of an outbreak, with outbreak
intensity increasing with larger values of RR (Craun et al. 2006).

Table 1 shows the RR of each district during weeks 36-52, derived from the diar-
rheal morbidity reported by hospitals, with the means of three main parameters:
population density, flood duration, and DO. Theoretically, an area having high pop-
ulation density, long flood duration, or lower DO should have a high risk of disease
and vice versa. The mean values of each district in table 1 suggest that all three
parameters affect the risk of diarrheal outbreak. For example, although the Bang
Pa-in and Phra Nakhon Si Ayudhya districts had the worst DO quality and the high-
est population density, respectively, their outbreak risks were moderate due to the
comparatively short duration of their floods. Even though the Bang Sai district had
the longest flood duration, its outbreak risk was also moderate due to having the
lowest population density.

3.4. Modelling of diarrheal-outbreak risk due to flooding

In this study, we aim to model the outbreak risk of diarrhea due to flooding by using
the BPNN approach. The RR of each district in table | was spatially spread over the
study area based on IDW to produce the target values for BPNN training and test-
ing. We defined the RR position as the location of the hospital in each district,
because in general diarrheal patients should go to the district hospital nearest to their
habitations. Thus, it is plausible to employ IDW to spatially interpolate the outbreak
risk by considering the distance from the training/testing point to the district hospi-
tal. In addition, we also added some RRs of district hospitals outside the study area
for better interpolation near the boundaries of the study area. The reference risk
map and the locations of district hospitals are shown in figure 7(a).

The map resolution was defined by the best spatial resolution of our input parame-
ters, which was the 50 m x 50 m resolution of the Radarsat-2 data. We had a total of
569 x 122 points (pixels). These points were divided into two groups: 66% for train-
ing and 34% for testing, which is the default setting for splitting learning data in
WEKA (Bouckaert et al. 2012), a popular open-source machine-learning software
developed by the University of Waikato, New Zealand.

In the training process, setting a suitable number of neurons in the hidden layer is
very important. If the number of hidden neurons exceeds an appropriate value, the
computation is time-consuming and unstable. On the other hand, if the number of
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Figure 7. Comparison of the reference risk map derived from the diarrheal-morbidity rate at
hospitals in the study area during flooding (left) and the risk map of diarrheal outbreak
simulated by the BPNN prediction model (right); a risk ratio (RR) less than or equal to 1
indicates no outbreak or no risk, otherwise the possibility of an outbreak or the outbreak
intensity increases with RR.

neurons is too small, the training process may not converge (Cao et al. 2010a). Due
to the large number of data tuples, we decided to split the input data by district. The
numbers of hidden-layer neurons for each district, which ranged from 3 to 9, are
shown in table 2.

To evaluate the prediction success, we assessed the accuracy by using correlation
coefficients (R-values) and RMS errors. RMS error is the most commonly used
measure in mathematical techniques to assess how close the predicted values from
the model are to the actual or reference values, while the correlation coefficient can
measure the statistical relationship between the test instances and the actual or ref-
erence values and indicate how well the data points or instances fit the linear line
(Witten & Frank 2005). The results of our BPNN predictions in table 2 show that
the correlation coefficients range from 0.79 to 0.93 (the correlation coefficient
ranges from 1, for perfectly correlated results, to 0, when there is no correlation, to
—1 when the results are perfectly correlated negatively), RMS errors range from
0.014 to 0.065, and the predicted RRs range from 0.82 to 1.57. The high correlation
coefficients indicate that our results have a very good correlation with the reference
or actual data, and the low RMS errors indicates that the predicted RR from the
model and the reference RR derived from the morbidity data are close to each
other. An RR resolution (the difference of two RR values) below 0.1 indicates
an indifferent risk for classifying the strength of an epidemiological association
(Craun et al. 2006). This can imply that the range of our RMS errors is less than
the adequate RR resolution to classify the level of outbreak risk. As discussed
above, we can conclude that our predictive model for each district can give accurate
predictions.

Finally, we created a map of the risk of diarrheal outbreak as predicted by the
BPNN model, as shown in figure 7(h). Comparing the predicted risk map with
the reference risk map derived from the morbidity rates at the hospitals in figure 7(a),
we can see that the simulated risk map reflects the actual risk and trends. For exam-
ple, both maps show high risk in Bang Ban and Sena, no or low risk in Bang Chai
and Bang Pa-in, and moderate risk in Bang Sai, Phra Nakhon Si Ayudhya, and
Uthai. With the high spatial resolution of the resulting map, decision-makers can use
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Table 2. The number of inputs for training and testing, the appropriate number of hidden
layers, and the correlation coefficients and RMS errors of the BPNN model prediction
computed using WEKA (open-source software).

Trained Tested Hidden Correlation

District inputs inputs layers coefficient RMS error
Sena 56,998 29,096 3 0.81 0.065
Bang Ban 36,036 18,662 8 0.83 0.038
Uthai 44,891 23,362 8 0.81 0.037
Bang Sai 43,371 22,501 5 0.93 0.035
Bang Pa-in 62,770 32,086 9 0.83 0.014
Phra Nakhon Si Ayudhya 31,105 16,014 7 0.79 0.029
Bang Chai 66,051 33,953 4 0.83 0.048
Bang Pahan 34,398 17,828 7 0.88 0.060

the map as an effective tool to protect communities and mitigate the effects of diar-
rheal disease due to flooding.

Compared with other common approaches that also aim to estimate the risk of
waterborne disease, our approach has the advantage of requiring only simple input
data, in particular water-sampling data. Instead of using other parameters of water
quality, such as E. coli and faecal coliform concentrations that need complicated and
time-consuming laboratory testing, our approach utilizes DO, which can easily and
instantly be measured by DO meters. In addition, DO is widely used as an indicator
of water quality of the water-quality surveillance system in many countries, therefore
DO data will be frequently updated from the measurement stations. In Thailand, for
instance, DO values are measured roughly once a week. Thus our approach can bet-
ter model the outbreak risk in near real time with up-to-date input data. The pre-
dicted risk can also help the decision-maker to prioritize outbreak prevention and
response when flooding occurs so that the appropriate measures can be taken.

4. Conclusions

Waterborne infectious diseases, particularly diarrhea, are a serious problem when
floods occur. Dirty flood water contaminated with pathogenic microorganisms is a
key factor causing people to become infected. To prevent waterborne outbreaks,
numerous studies have attempted to detect and assess the risk of waterborne diseases
based on the direct measurement of pathogens, but the complicated and time-con-
suming laboratory testing cause a lack of samples for comprehensively modelling
and analysing the risk in flood-affected areas. In contrast, based on the BPNN tech-
nique, this study provided an approach to assess the outbreak risk of diarrhea due to
flooding by using simple parameters, including flood duration, DO, and population
density. A time series of Radarsat-2 scenes were utilized to spatially define flood
duration, which in 2011 ranged from a week to 4 months. Samples of DO content
were used to estimate the spatial distribution of flood-water quality in inundated
areas. The data showed that the poorest quality of flood water appeared in major
industrial estates and some rural areas, while a better quality of flood water was
mostly located in the countryside or in agricultural areas. We used the RR function
on data from weekly surveillance reports of the diarrheal morbidity from district
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hospitals in the study area for detection of the diarrheal outbreaks due to the flood.
The mean RRs of eight districts of Ayutthaya province in the study area were
between 0.82 and 1.48. (An RR less than or equal to 1 indicates no outbreak or no
risk. Otherwise it indicates the possibility of an outbreak, with outbreak intensity
increasing with larger values of RR.) The BPNN model produced very good predic-
tion accuracy, with high correlation coefficients, which measure the statistical corre-
lation between predicted and reference RR, ranging from 0.79 to 0.93 (the
correlation coefficient ranges from 1 for perfectly correlated results to 0 when there
is no correlation), and acceptable RMS errors, ranging from 0.014 to 0.065. This
indicates that the predictive models of the diarrheal-outbreak risk for each district
are very accurate.

We can thus conclude that our approach is a promising method for modelling the
risk of diarrheal outbreak in a flood disaster and will be useful for making decisions
regarding preventive measures and countermeasures by spatial analysis. Compared
with other common approaches using pathogen parameters, our approach has the
advantage of only requiring simple input data, leading to rapidly and comprehen-
sively assessing the outbreak risk in floods. Embedding this approach into the near
real-time flood-monitoring system organized by GISTDA (http://flood.gistda.or.th),
to prevent future outbreaks due to floods in Thailand, can assist public-health and
relief agencies to prioritize aid, public-health action, and temporary evacuation
centres for people affected by flood disasters.

For further work, other factors affecting epidemics in a flood situation, such as
emigration, the conditions of hygiene in various localities, and the flood intensity,
can be added to the model. Theoretically, adding more impact factors should pro-
duce better results, but on the other hand, this also requires more effort, cost, and
time. The advantages and disadvantages must be weighed. It may also be useful to
apply this approach to other waterborne infectious diseases.
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