พารามิเตอร์ของระบบเรดาร์

1. สมการเรดาร์ (RADAR equation)

006_RADAR equation

PR = พลังงานทั้งหมดที่รับ (Total power received)

PT = พลังงานที่ส่งออก (Power transmitted)

σ0 = การกระจายเรดาร์ต่อหน่วยพื้นที่ หรือสัมประสิทธิ์การกระจัดกระจาย (Radar scatter coefficient)

A = พื้นที่หน้าตัด (RADAR cross section)

G = อัตราการขยายจากสายอากาศ (Antenna gain)

R = ระยะทางแนวพิสัย (Range)

λ = ช่วงคลื่น (Wavelength)

จากสมการจะเห็นได้ว่ามีปัจจัยหลักที่ส่งผลต่อความเข้มของพลังงานที่กระจัดกระจายกลับ คือ พลังงานที่ส่งออกความยาวคลื่น ขนาดของสายอากาศรับสัญญาณ เรขาคณิตของการถ่ายภาพ เช่น ความกว้างของลำแสงมุมตกกระทบ และระยะทาง เป็นต้น

2. สเปกตรัมแม่เหล็กไฟฟ้าช่วงคลื่นเรดาร์

ช่วงคลื่นเรดาร์เป็นช่วงคลื่นที่สูงกว่าคลื่นแสงสว่างและคลื่นความร้อน ซึ่งในทางเทคโนโลยีการรับรู้จากระยะไกล อยู่ระหว่าง 1 มิลลิเมตร ถึง 1 เมตร ซึ่งเป็นช่วงคลื่นไมโครเวฟ (ภาพที่ 3.58) และมักนิยมใช้ตัวอักษรที่เป็นมาตรฐานบอกช่วงคลื่น ตามภาพ เรียงลำดับจากสั้นไปยาว คือ แบนด์ Ka K Ku X C S L UHF และ P ซึ่งได้แสดงความสัมพันธ์ระหว่างแบนด์ต่างๆ กับความยาวคลื่นและความถี่

ภาพสเปกตรัมแม่เหล็กไฟฟ้า
ภาพสเปกตรัมแม่เหล็กไฟฟ้า
ภาพแสดงความยาวคลื่น ความถี่ และตัวอักษรแบนด์เรดาร์ ที่มา : Henderson, F.M. and Lewis, A.J. (1998)
ภาพแสดงความยาวคลื่น ความถี่ และตัวอักษรแบนด์เรดาร์
ที่มา : Henderson, F.M. and Lewis, A.J. (1998)

3. โพลาไรเซชัน (Polarization)

โพลาไรเซชัน หมายถึง ทิศทางการแผ่กระจายของสนามแม่เหล็กไฟฟ้าของคลื่นแม่เหล็กไฟฟ้า ซึ่งจะมีการกระจายทั้งแนวตั้งและแนวนอนโดยระบบเรดาร์สามารถที่จะส่งหรือรับสัญญาณคลื่นแม่เหล็กไฟฟ้าในทิศทางการแผ่กระจายทั้งแนวตั้ง (Vertical : V) และแนวนอน(Horizontal : H) เมื่อส่งคลื่นแม่เหล็กไฟฟ้าในทิศทางการแผ่กระจายทางแนวนอน (H) และรับคลื่นการแผ่กระจายในแนวนอน (H) จะใช้สัญลักษณ์ HH ในทำนองเดียวกันก็มีการรับส่งเป็น HV VH และ VV ในทิศทางการแผ่กระจาย ทั้งนี้ปฏิสัมพันธ์ระหว่างคลื่นเรดาร์กับวัตถุสำหรับโพลาไรเซชันที่ต่างกันจะไม่เหมือนกันขึ้นอยู่กับคุณสมบัติของวัตถุ

ภาพโพลาไรเซชัน
ภาพโพลาไรเซชัน

4. พิสัยและแอซิมัท (Range and Azimuth)

การถ่ายภาพเรดาร์เป็นแบบระบบการถ่ายด้านข้างและจะสะสมข้อมูลไปอย่างต่อเนื่อง มิติของการถ่ายภาพที่มีทิศทางไปตามแนวการบิน เรียกว่า แอซิมัท มิติของการถ่ายภาพที่ขวางแนวการบิน เรียกว่า พิสัย ขอบภาพที่ใกล้จุดตรงใต้เรดาร์ เรียกว่า ขอบพิสัยใกล้ (Near range edge) ส่วนขอบภาพที่ไกล เรียกว่า ขอบพิสัยไกล (Far range edge)

ภาพเรขาคณิตของเรดาร์จากเครื่องบิน
ภาพเรขาคณิตของเรดาร์จากเครื่องบิน

5. ความละเอียด

ความละเอียด หมายถึง ความสามารถของระบบที่จะแยกจากกันระหว่างวัตถุสองอย่างที่ใกล้กันในระบบเรดาร์ ความละเอียดจะกำหนดทั้งทิศทางตามพิสัย (ขวางแนวโคจร) และทิศทางตามแอซิมัท (ตามแนวโคจร) โดยมีรายละเอียดบางประการดังนี้

ทิศทางพิสัย

ทิศทางแอซิมัท

– ความละเอียดตามแนวพิสัยของเรดาร์ช่องเปิดสังเคราะห์ (Synthetic Aperture Radar : SAR) ถูกกำหนดโดยเครื่องเรดาร์ที่สร้างขึ้นและหน่วยประมวลผล- ความละเอียดขึ้นอยู่กับความยาวของพัลส์ ความยาวพัลส์ที่สั้นจะให้ความละเอียดดีขึ้น- ข้อมูลเรดาร์จะถูกสร้างขึ้นจากข้อมูลที่ได้รับในแนวของพิสัยเอียง (Slant range) แต่เมื่อทำภาพจะถูกฉายลงในแนวพิสัยราบ (Ground range) – ความละเอียดตามแอซิมัทถูกกำหนดโดยความกว้างของมุมลำแสงของแนวพื้นที่- วัตถุที่อยู่ใกล้กันสามารถแยกจากกันได้ จะต้องมีระยะทางในแนวแอซิมัทยาวกว่าความกว้างของลำแสงบนพื้นดิน- เรดาร์ช่องเปิดสังเคราะห์ได้ชื่อจากกระบวนการวิเคราะห์ทางตามแนวโคจร และต้องมีความละเอียดตามแนวโคจร น้อยกว่าความกว้างของลำแสง (Beam width) ที่ส่งออกจากสายอากาศส่งสัญญาณ

ความละเอียดของภาพเรดาร์กำหนดทั้งในทิศทางตามแนวโคจร และตามแนวความกว้างหรือขวางแนวโคจร

โดย    rR = ความละเอียดตามแนวพิสัย

rA = ความละเอียดตามแนวแอซิมัท

ภาพเซลล์ความละเอียด (Resolution cell)
ภาพเซลล์ความละเอียด (Resolution cell)

6. ความสัมพันธ์ระหว่างมุมตกกระทบ (Incident angle) มุมก้ม (Depression angle) และมุมมอง (Look angle)

มุมตกกระทบ (θ)       หมายถึง มุมระหว่างคลื่นเรดาร์ที่ตกกระทบกับแนวดิ่งของพื้นผิวโลก

มุมก้ม (β)               หมายถึง มุมระหว่างแนวนอนกับแนวคลื่นเรดาร์

มุมมอง (ø)                หมายถึง มุมระหว่างแนวดิ่งกับคลื่นเรดาร์

ภาพแสดงความสัมพันธ์ระหว่างมุมมอง (ø) มุมก้ม (β) และมุมตกกระทบ (θ) เมื่อพื้นโลกเรียบ
ภาพแสดงความสัมพันธ์ระหว่างมุมมอง (ø) มุมก้ม (β) และมุมตกกระทบ (θ) เมื่อพื้นโลกเรียบ

7. มุมตกกระทบเฉพาะที่ (Local incident angle : LIA)

มุมตกกระทบเฉพาะที่ หมายถึง มุมระหว่างคลื่นเรดาร์ ที่ตกกระทบกับแนวตั้งฉากกับความลาดชันของพื้นที่ในกรณีที่พื้นที่มีความลาดชัน

ภาพ (ก) แสดงแบบจำลองระบบ (ข) มุมตกกระทบเฉพาะที่
ภาพ (ก) แสดงแบบจำลองระบบ (ข) มุมตกกระทบเฉพาะที่

8. พิสัยตามแนวเอียงและตามแนวราบ (Slant range and Ground range)

ตรงกันข้ามกับเครื่องวัดเชิงแสง (Optical sensor) เรดาร์จะถ่ายภาพในแนวเอียง ซึ่งเป็นที่ทราบกันดีว่าเป็นทิวทัศน์แนวเฉียง (Oblique perspective) การถ่ายภาพในลักษณะเช่นนี้เพื่อที่จะส่งพัลส์ให้มีปฏิสัมพันธ์กับพื้นผิวโลกในระยะที่เพิ่มขึ้นจากสายอากาศเรดาร์ และได้พิสัยหรือระยะทางของภาพ พิสัยตามแนวเอียงเป็นระยะทางระหว่างเรดาร์กับหน่วยการสะท้อนบนพื้นผิว ซึ่งเป็นการวัดเวลาจากการส่งสัญญาณแรกจนกระทั่งรับสัญญาณกลับสู่เครื่องรับรู้ ข้อมูลดิบของเรดาร์ที่ทำการเก็บข้อมูลตามพิสัยแนวเอียง ซึ่งสามารถคำนวณได้จากความสัมพันธ์

007_SR

SR     = พิสัยตามแนวเอียง

c      = ความเร็วของแสง

t         = เวลาระหว่างการส่งพัลส์ และรับสัญญาณกลับ

ผู้ใช้ต้องการข้อมูลที่แสดงข้อมูลตามแนวราบมากกว่าแนวเอียง ระยะทางตามแนวราบเรียกว่าพิสัยตามแนวราบ ซึ่งสามารถคำนวณเมื่อทราบมุมตกกระทบ (θ) ดังนี้

008_SR2

การประมวลผลภาพเรดาร์จึงจะต้องปรับแก้ข้อมูลในพิสัยตามแนวเอียง มาเป็นพิสัยตามแนวราบ

9. เรดาร์ช่องเปิดจริง และเรดาร์ช่องเปิดสังเคราะห์ (Real and Synthetic Aperture Radars: RAR and SAR)

ในช่วงเริ่มต้นการถ่ายภาพเรดาร์ ระบบเรดาร์เป็นการถ่ายภาพในแนวเฉียงจะเป็นเรดาร์ช่องเปิดจริงซึ่งมีสายอากาศ หรือจานรับส่งสัญญาณแบบติดแน่นบนเครื่องบิน การพัฒนาให้ได้ความความละเอียดดีขึ้นต้องมีสายอากาศขนาดใหญ่ และความยาวคลื่นลดลง ดังนั้นจึงเป็นปัญหาและอุปสรรคในการถ่ายภาพเรดาร์เป็นอย่างมากต่อมาได้มีการพัฒนาเรดาร์ช่องเปิดสังเคราะห์ขึ้นทำให้ลดปัญหาได้มาก ความแตกต่างของระบบเรดาร์ทั้งสองประเภทคือ วิธีการได้มาซึ่งความละเอียดด้านแอซิมัท (Azimuth resolution) ในการถ่ายภาพเรดาร์ไม่ว่าแบบใดความละเอียดในแนวพิสัยเอียงจะเหมือนกัน ส่วนความละเอียดในแนวแอซิมัทหรือแนวการบินจะแตกต่างกันระหว่างเรดาร์ช่องเปิดจริงกับเรดาร์ช่องเปิดสังเคราะห์ เรดาร์ช่องเปิดจริงรับสัญญาณในแนวแอซิมัทขึ้นอยู่กับขนาดของสายอากาศ หากต้องการความแยกชัดที่ละเอียดต้องใช้สายอากาศความมีขนาดใหญ่ขึ้น ส่วนระบบ SAR อาศัยการเคลื่อนที่ต่อเนื่องของสายอากาศและเก็บข้อมูลเป้าหมายหนึ่งๆ สะสมต่อเนื่องตามเวลาที่กำหนด แล้วจึงประมวลผลเพื่อกำหนดความละเอียดและใน SAR จะสังเคราะห์ความกว้างของลำแสงที่แคบ ดังนั้นระบบ SAR จะใช้สายอากาศสั้น และสามารถใช้ช่วงคลื่นที่ยาวขึ้นได้ ทำให้มีความละเอียดดีขึ้น

ภาพเรดาร์ช่องเปิดจริงและเรดาร์ช่องเปิดสังเคราะห์ ที่มา : Henderson, F.M. and Lewis, A.J. (1998)
ภาพเรดาร์ช่องเปิดจริงและเรดาร์ช่องเปิดสังเคราะห์
ที่มา : Henderson, F.M. and Lewis, A.J. (1998)

10. การย่นระยะของภาพเรดาร์ (Foreshortening)

ลักษณะการย่นระยะในภาพเรดาร์คือ ปรากฏการถ่ายภาพที่เกิดขึ้นเมื่อวัตถุบนพื้นที่ในทิวทัศน์ที่มีความลาดเอียงหันหน้าเผชิญหน้าเรดาร์ได้ภาพหดสั้นกว่าความเป็นจริง ในลักษณะของการย่นระยะนี้คลื่นเรดาร์จะชนฐานของพื้นที่ก่อนส่วนยอด ลักษณะการย่นระยะจะได้ภาพสว่างกว่า การย่นระยะสูงสุดเมื่อความลาดชันของพื้นที่ตั้งฉากกับลำแสงของเรดาร์ในกรณีนี้มุมตกกระทบเฉพาะที่จะมีค่าเป็น 0 ผลก็คือทั้งส่วนยอดและส่วนล่างของพื้นที่จะถูกบันทึกภาพพร้อมกัน ดังนั้นจะมีตำแหน่งที่เดียวกัน สำหรับความลาดชันหนึ่งๆ ที่กำหนดให้ผลของการย่นระยะจะลดลงเมื่อเพิ่มมุมตกกระทบ ซึ่งมุมตกกระทบเฉลี่ยเข้าใกล้ 90 ํ ผลการย่นระยะจะถูกลบไปแต่จะปรากฏเงาแทนที่ ในการเลือกมุมตกกระทบมักจะมีการแลกเปลี่ยนหรือแทนที่กัน ระหว่างการปรากฏเงาและการย่นระยะ

ภาพการย่นระยะ
ภาพการย่นระยะ

11. การวางทับ (Layover)

การวางทับ เกิดขึ้นเมื่อเครื่องรับรู้เรดาร์ได้รับพลังงานการสะท้อนกลับของวัตถุส่วนยอดก่อนการกลับของพลังงานสะท้อนของวัตถุส่วนฐาน ดังนั้นตำแหน่งของวัตถุส่วนยอดจะคลาดเคลื่อนจากตำแหน่งจริง โดยแสดงให้เห็นส่วนล่างของวัตถุก่อน ในทางพิสัยใกล้ของภาพถ่ายเรดาร์ การวางทับจะมากขึ้นเมื่อเรขาคณิตการมองภาพที่มีมุมตกกระทบต่ำ เช่น ภาพเรดาร์จากดาวเทียม

ภาพการวางทับ
ภาพการวางทับ

12. เงา (Shadow)

เงาของเรดาร์ แสดงถึง พื้นที่ที่ไม่ถูกกระทบโดยคลื่นเรดาร์ ดังนั้นพื้นที่ส่วนนี้เครื่องรับสัญญาณเรดาร์จะไม่ได้รับสัญญาณสะท้อนกลับเงาจะปรากฏเป็นสีดำในภาพเรดาร์ในภาพถ่ายเรดาร์ เงาจะเกิดขึ้นในทิศทางพิสัยด้านล่างด้านหลังของวัตถุที่สูง เงาเป็นตัวช่วยแสดงทิศทางการถ่ายภาพของเรดาร์ถ้าการพิมพ์คำอธิบายไม่สมบูรณ์หรือหายไป เงาในภาพเรดาร์ให้ข้อมูลเกี่ยวกับเรดาร์ได้หลายประการ เช่น การรบกวนของระบบ และสามารถใช้ประโยชน์ในภาพที่ละเอียดและวิเคราะห์ระบบ ข้อมูลเกี่ยวกับความสูงของวัตถุ และการตีความความสูงต่ำของพื้นที่ สามารถวิเคราะห์จากเงาภาพ

ภาพเงา
ภาพเงา

13. พาราแลกซ์ (Parallax) และ Radar Interferometry

ความแตกต่างของระยะทางของตำแหน่งเดียวกันของวัตถุที่ปรากฏในภาพเมื่อถ่ายซ้อนทับกันจากมุมถ่ายภาพที่ต่างกันเรียกว่า พาราแลกซ์ หากมีความแตกต่างกันมากภาพสามารถที่จะแสดงสามมิติได้เด่นชัดขึ้นพาราแลกซ์ของระบบ SAR มีด้วยกัน 3 ประเภท

– ถ่ายภาพที่ความสูงเท่ากันที่ตำแหน่งตรงกันข้าม มีพาราแลกซ์ = DP1 + DP2

– ถ่ายภาพในแนวดิ่งเดียวกัน แตกต่างความสูง มีพาราแลกซ์ = DP1 – DP2

– ถ่ายภาพทิศทางเดียวกันในแนวราบ แต่ระยะทางถึงวัตถุต่างกัน มีพาราแลกซ์ = DP1 – DP2

ภาพแสดงพาราแลกซ์ของภาพเรดาร์ทั้งสามประเภทดังกล่าว ที่มา : Henderson, F.M. and Lewis, A.J. (1998)
ภาพแสดงพาราแลกซ์ของภาพเรดาร์ทั้งสามประเภทดังกล่าว
ที่มา : Henderson, F.M. and Lewis, A.J. (1998)

จากพื้นฐานของระบบเรดาร์ เมื่อส่งสัญญาณจากสายอากาศไปสู่เป้าหมายและรับสัญญาณกลับใน SAR จะบันทึกข้อมูลในแต่ละครั้งที่รับสัญญาณกลับ คือ เวลา ความเข้ม และตำแหน่งของเครื่องรับ ซึ่งเรียกว่าเฟส (Phase) เมื่อเปรียบเทียบความแตกต่างของเฟสที่บันทึกสัญญาณกลับจากตำแหน่งเดียวกันในขณะที่มีการเคลื่อนที่สามารถที่คำนวณระยะทางที่แตกต่างได้ ในการได้มาซึ่งโมเดลความสูงเชิงพื้นที่นั้น จะเป็นการถ่ายภาพในพื้นที่เดียวแต่มีตำแหน่งที่ถ่ายภาพแตกต่างกัน ในการถ่ายภาพของเรดาร์อาจจะมีแนวการบินข้างเดียวกันหรือตรงกันข้าม 2 แนว ที่ความสูงเท่ากัน หรือมีตำแหน่งในแนวตั้งเดียวกัน แต่ความสูงของเครื่องบินต่างกัน โดยอาศัยความแตกต่างของเฟสเราสามารถคำนวณหาความแตกต่างของระดับพื้นที่ได้ ซึ่งเรียกว่า Differential Interferometry

14. Speckle

สัญญาณที่ถ่ายภาพเรดาร์เมื่อกระทบกับสภาพพื้นที่ที่หลากหลายมุมซึ่งขึ้นอยู่กับมุมตกกระทบมุมตกกระทบเฉพาะที่ และอื่นๆ เมื่อรับสัญญาณกลับสู่เครื่องรับจะเกิดความแปรปรวนแบบสุ่มและมักจะมีลักษณะเป็นเม็ดหรือจุดในภาพเรดาร์ เรียกว่า Speckle

Speckle ในบางครั้งก็เป็นประโยชน์ที่ใช้ในการแปลตีความ ในกระบวนการกรองภาพมีวิธีการที่จะลบSpeckle ออกจากภาพซึ่งมีหลากหลายวิธี

ที่มา : ตำราเทคโนโลยีอวกาศและภูมิสารสนเทศศาสตร์

Copyright © 2018 LEARN : อาณาจักรภูมิสารสนเทศ อาณาเขตแห่งการเรียนรู้

LEARN

404 Not Found

404

Not Found

The resource requested could not be found on this server!


Proudly powered by LiteSpeed Web Server

Please be advised that LiteSpeed Technologies Inc. is not a web hosting company and, as such, has no control over content found on this site.