บทนำเรดาร์ (RADAR)

เรดาร์ได้พัฒนาขึ้นระหว่างสงครามโลกครั้งที่ 2 เพื่อตรวจหาตำแหน่งและเส้นทางของเครื่องบินจากสถานีภาคพื้นดิน และใช้ในการนำทางในสภาพอากาศที่ไม่ดี RADAR ย่อมาจาก “Radio Detection And Ranging”เรดาร์เป็นระบบการตรวจวัดที่ต้องมีแหล่งของพลังงานที่มนุษย์สร้างขึ้น และส่งสัญญาณในช่วงคลื่นไมโครเวฟไปยังวัตถุเป้าหมายแล้ววัดความเข้มข้นของพลังงานที่กระจัดกระจายกลับ (Backscatter) ไปสู่เครื่องรับรู้ ซึ่งเป็นระบบการรับรู้แบบแอ็กทิฟ ดังนั้นการรับรู้หรือได้มาซึ่งภาพจากเรดาร์จึงสามารถถ่ายภาพได้ทั้งกลางวัน และกลางคืน ในทุกสภาพอากาศ ทะลุทะลวงเมฆได้

ระบบเรดาร์ถ่ายภาพในแนวเอียงซึ่งใช้สายอากาศที่ติดตั้งเชื่อมประจำที่บนเครื่องบินโดยชี้ไปทางวัตถุเป้าหมาย เรียกว่า เรดาร์มองข้าง (Side-Looking Radar : SLR หรือ Side-Looking Airborne : SLAR) ความละเอียดของเรดาร์ขึ้นอยู่กับขนาดของสายอากาศ ระบบเรดาร์จากห้วงอวกาศเริ่มขึ้นเมื่อปี ค.ศ. 1978 เมื่อสหรัฐอเมริกาได้ส่งดาวเทียม SEASAT และหลังจากนั้นก็มีการศึกษาระบบเรดาร์จากห้วงอวกาศโดยกระสวยถ่ายภาพจากเรดาร์ (Shuttle Imaging Radar : SIR) ต่อเนื่องตั้งแต่ปี ค.ศ. 1980 นอกจากนี้ได้มีการพัฒนาระบบเรดาร์บนดาวเทียมเรื่อยมาจนถึงปัจจุบัน เช่น ดาวเทียม ERS JERS ENVISAT RADARSAT และ ALOS เป็นต้น

ระบบการถ่ายภาพเรดาร์ประกอบด้วย เครื่องส่งสัญญาณ (Transmitter) เครื่องรับสัญญาณ(Receiver) อุปกรณ์อิเล็กทรอนิกส์ และคอมพิวเตอร์ เพื่อประมวลผลและบันทึกข้อมูล เครื่องส่งสัญญาณส่งพัลส์ของพลังงานไมโครเวฟเป็นช่วงเท่าๆ กัน และปรับระยะโดยจานตั้งฉากกับทิศทางคลื่นที่ลงสู่เป้าหมายเป็นมุมเอียง เมื่อคลื่นเรดาร์กระทบกับเป้าหมายสัญญาณจะกระจัดกระจายกลับไปยังเครื่องรับสัญญาณ ข้อมูลที่กระจัดกระจายกลับในแต่ละครั้ง ความเข้มของสัญญาณ เวลา และมุมที่ตกกระทบเป้าหมาย ที่ได้รับจากระบบรับรู้จะถูกคำนวณเพื่อบอกตำแหน่งของวัตถุเป้าหมาย ภาพเรดาร์ที่ประมวลผลจะเป็นความเข้ม (Strength) ของสัญญาณกลับซึ่งเป็นระดับความสว่างของภาพ

ภาพแสดงพื้นฐานของภาพเรดาร์, ที่มา : Lillesand, T.M. and Kiffer, R.W. (1994)
ภาพแสดงพื้นฐานของภาพเรดาร์
ที่มา : Lillesand, T.M. and Kiffer, R.W. (1994)
1(227)
ภาพแสดงพื้นฐานของภาพเรดาร์
ที่มา : Lillesand, T.M. and Kiffer, R.W. (1994)

การถ่ายภาพในแนวเอียงดังภาพเป็นแนวที่ตั้งฉากกับทิศทางการบิน ซึ่งเรียกว่า ทิศทางพิสัย(Range direction) ส่วนทิศทางของการบินเรียกว่า ทิศทางแอซิมัท (Azimuth direction) ดังนั้นความละเอียดของเรดาร์จึงประกอบด้วย 2 ทิศทาง ในบทนี้มีวัตถุประสงค์หลักเพื่อที่จะนำเสนอภาพรวมของหลักการเบื้องต้นของเรดาร์ ซึ่งใช้เป็นพื้นฐานในการเข้าใจระบบเรดาร์ และปฏิสัมพันธ์เบื้องต้นของเรดาร์กับวัตถุเป้าหมายอย่างย่อ อันเป็นแนวทางที่จะศึกษาในรายละเอียดต่อไป เพราะในปัจจุบันข้อมูลจากดาวเทียมสำรวจโลกไม่ว่าจะเป็นข้อมูลจากดาวเทียม RADARSAT และ ALOS เป็นข้อมูลด้านระบบรับรู้แบบแอ็กทิฟ ถ้าหากปราศจากความรู้ความเข้าใจระบบเรดาร์ และปฏิสัมพันธ์ระหว่างคลื่นเรดาร์ แล้วการแปลตีความภาพจะไม่มีความถูกต้องเลย อย่างน้อยในส่วนนี้จะเป็นช่องทางหนึ่งที่ผู้สนใจมีความรู้พอสมควร ดังนั้นการนำเสนอในที่นี้จะแบ่งเป็น 2 เรื่องหลัก คือ พารามิเตอร์ของระบบ (System parameters) และพารามิเตอร์ด้านสิ่งแวดล้อมหรือพื้นที่เป้าหมาย (Environment/ Target parameters)

ที่มา : ตำราเทคโนโลยีอวกาศและภูมิสารสนเทศศาสตร์

Copyright © 2018 LEARN : อาณาจักรภูมิสารสนเทศ อาณาเขตแห่งการเรียนรู้

LEARN

404 Not Found

404

Not Found

The resource requested could not be found on this server!


Proudly powered by LiteSpeed Web Server

Please be advised that LiteSpeed Technologies Inc. is not a web hosting company and, as such, has no control over content found on this site.