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ABSTRACT: Land cover map derived from remotely sensed classification is universally used and it is probably 

the most important data in the terrestrial dataset. Many approaches have been shown to be very efficient and 

extensively used in automated land cover classification. However, the sensitivity and reliability of the classification 

output is an important subject for image classification. Classification accuracy in an inference process is always less 

than a desired accuracy in the actual classification process, thus this marginalized difference is considered as an 

element of uncertainty in the classification results. Failure to recognize uncertainty may lead to erroneous and 

misleading interpretations. Therefore, the objective of this research is to quantify the uncertainty of the 

classification accuracy by considering the impact of possible factors on image classification. Three classifiers, 

which include a Gaussian maximum likelihood classifier (GMLC), a backpropagation neural network (BPNN), and 

a supervised self-organizing map (SSOM) neural network, with the synthetic time-series images are used to 

evaluate the classification uncertainty. Furthermore, the Monte Carlo simulation technique is applied to assess the 

reliability of the classification output by focusing on the uncertainty associated with the input data and training data. 

The results show the unstable nature of the BPNN, which produces a large variation in the accuracy distribution. It 

can be assumed that the BPNN is unable to maintain variation in input and training data, whereas the GMLC and 

SSOM are more stable and robust. Although GMLC shows ability to control uncertainty in the classification 

accuracy, the results reveal that the highest classification accuracy and lowest variation of classification accuracy 

are obtained by SSOM. 

 

 

INTRODUCTION 

 

Uncertainty has been receiving increased attention as the important subject of many researches in geographical 

information science for over a decade (Goodchild & Gopal, 1989; Heuvelink, 1998; Zhang & Goodchild, 2002). 

The uncertainty of spatial output of a geographical information system (GIS) and remote sensing needs to be 

assessed in those outputs, particularly in classification accuracy (Atkinson & Foody, 2002; Fisher, 1994; Food, 

2002). Land cover map derived from remotely sensed classification is universally used and it is the most important 

data in the terrestrial dataset. Our previous study confirmed that supervised self-organizing map (SSOM) is the 

efficient method for image classification and also is often used to create a land cover map. However, classification 

accuracy in an inference process is always less than a desired accuracy in the actual classification process and most 

studies try to improve classification method to provide the high accuracy. There is always an element of uncertainty 

in the classification results. Failure to recognize uncertainty may lead to erroneous and misleading interpretations. 

Therefore, the objective of this research is to evaluate the uncertainty in the classification accuracy by considering 

the impact of possible factors on the spatial variation in classifier. In this research, SSOM with the synthetic data is 

used to evaluate the classification uncertainty by focusing on the uncertainty associated with the input data, training 

data, and the classifier itself. 

 

 

OBJECTIVE 

 

To quantify the uncertainty of the classification accuracy of the GMLC, BPNN and SSOM classifier associated 

with the input data and training data. 

 

 

METHODOLOGY 

 

Simulation of Synthetic Remotely-sensed Data 

 

The synthetic data are generated based on a time-series of MODIS-EVI image (23 dates per year). The process is 

shown in Figure 1. To reduce computational time, the synthetic image is relatively small in size, corresponding to 



50 x 50 pixels in 23 layers. Each layer consists of four assumed land cover types derived from the MODIS-EVI 

values of pure pixels located within large homogeneous areas. The four land cover classes identified from the 

MODIS-EVI data are verified through land cover reference images. 

 

 
 

Figure 1 The process to simulate the remotely sensed synthetic data 

 

 

Evaluation of Uncertainty in Classification Accuracy 

 

This research is aimed to evaluate the uncertainty of the classification accuracy associated with the input data and 

training data. Three classifiers consisting of GMLC, BPNN and SSOM are employed in a hard classification mode 

and applied to the same input and training data. The BPNN and SSOM are applied using the suitable neural 

network configurations by using trial-and-error analysis. Monte Carlo simulation is a well-established technique 

which involves the computation of uncertainty in the output induced by the quantified uncertainty in the input and 

model (Canters, 1997; Heuvelink, 1999). Although this technique is computationally intensive, it has the advantage 

of being universally applicable to analyze the propagation of error (Canters, 1997; Heuvelink, 1993).  

 

In this research, Monte Carlo simulations technique is applied to assess the reliability of the classification output by 

focusing on the uncertainty associated with the input data and training data. The uncertainty in input data is 

associated with the variations of environmental conditions (e.g. land management practices, climate change, 

atmosphere interactions, soil fertility) and data preprocessing. These variations have an influence on the 

classification accuracy. Due to a significant impact of training samples on the performance of a classifier, 

particularly neural network classifiers, it is important to investigate the performance of a classifier by using 

different training data (Kavzoglu & Mather, 2003). Therefore, there are two comparative evaluation experiments of 

the GMLC, BPNN, and SSOM in this study: one experiment with different simulated input data and another with 

different random training data.  

 

A. Uncertainty Associated with Input Data 

 

For the first experiment, 500 simulations are run with different simulated input data with the same training data. 

Different simulated input data are generated through a random number generator based on a normal distribution 

using the extracted mean and standard deviation of each class. The process is shown in Figure 2.  The classification 

is performed using the three classifiers and it is repeatedly run 500 times with the same training data and varied 

input image. Each single time, the classification provides a different realization of the classification accuracy. The 



500 accuracy results are used to generate the distribution of classification accuracy by using box plot and to create 

the possibility of accuracy for each pixel.  

 

 
Figure 2 Experimental procedures to evaluate the classification uncertainty associated with the input data 

 

 

B. Uncertainty Associated with Training Data 

 

The second experiment utilizes 500 different training data. Each dataset is generated by randomly selecting 240 

pure pixels (60 pixels per class) to train three classifiers. In this experiment, 500 simulations with different training 

data are applied to the same synthetic time-series image. Classification accuracy is assessed by comparing the 

output of each classification with the reference data. Then, the distribution of classification accuracy and image of 

accuracy possibility are generated to evaluate the uncertainty in classification accuracy associated with training 

data. The process is shown in Figure 3. 

 

 
Figure 3 Experimental procedures to evaluate the classification uncertainty associated with the training data 

 

 

RESULTS 

 

Figure 4 and 5 show the classification accuracy distributions of the GMLC, BPNN, and SSOM derived from 500 

different simulated input datasets and 500 different random training datasets, respectively. The results reveal that 

the highest OA and KAP are obtained by the SSOM in all 500 simulations of both experiments. For the first 

experiment, the mean OA of the GMLC, BPNN, and SSOM is 81%, 78%, and 88% respectively. Similar findings 

are also observed in the second experiment, which show OAs of 80%, 78%, and 86% for the GMLC, BPNN, and 

SSOM respectively. In statistical comparisons, the results of the t-statistic of each paired difference are performed 

in both experiments. The results show that the differences in the mean accuracy of these three classifiers are 

statistically significant. The mean differences also indicate that the mean OA and KAP of SSOM is significantly 

higher than those of GMLC and BPNN. Moreover, comparing to other classifiers, BPNN performs less 

satisfactorily as illustrated by considerably low mean OA and KAP. 

 



Moreover, the SSOM has also the lowest standard deviation of OA (1.21% and 1.14%) for both experiments, 

whereas the highest standard deviation of OA (6.15% and 4.16%) for both experiments is obtained by BPNN. The 

BPNN performs less satisfactorily as indicated by lower accuracy comparing to other classifiers. Although GMLC 

shows ability to control uncertainty in the classification accuracy, the multivariate normal model of GMLC is not as 

effective as the SSOM in the classification of time-series images. This is because the GMLC highly depends on an 

assumption of the distribution of data. In reality, classes often display non-normal distributions, which can be 

difficult to correct. In addition, the results show the unstable nature of the BPNN, which produces a large variation 

in the accuracy distribution. It can be assumed that the BPNN is unable to maintain variation in input and training 

data, whereas the SSOM is more stable and robust. This classifier provides high accuracy with very small variation. 

Uncertainty in input and training data has only a slight effect on the classification accuracy of the SSOM indicating 

that it outperforms the GMLC and the BPNN. 

 

Figure 6 and 7 shows spatial comparison of accuracy possibility derived from GMLC, BPNN, and SSOM in 

different simulated input data and in different random selecting training data. The images of accuracy possibility 

indicate how deviation in input data and training data affect the uncertainty in classification accuracy of the three 

methods. The result clearly shows that SSOM shows the highest performance in accuracy possibility with small 

areas of uncertainty on the areas of mixed pixels. BPNN shows meaningful classification results but produce 

misclassification results along the boundaries of classes or in the areas of mixed pixels. The visual depiction of 

GMLC result demonstrates a large variation in possibility of accuracy, particularly on the area of mixed pixels.  

 

Therefore, the results reveal that the uncertainty in input image and training data has small effect on SSOM 

comparing to BPNN and GMLC. SSOM is a stable and robust classifier, which provides precise accuracy. 

Additionally, the results reveal that the changing input data and training data have a relatively small impact on the 

homogenous areas, whereas have a large influence on the possibility of accuracy in heterogeneous areas. 

 

 

    
GMLC BPNN SSOM  

 

Figure 6 Images of accuracy possibility derived from GMLC, BPNN, and SSOM in different simulated input data 

 

 

    
GMLC BPNN SSOM  

 

Figure 7 Images of accuracy possibility derived from GMLC, BPNN, and SSOM in different random selecting 

training data  



 
 

 
 

  

Figure 4 Distribution of classification accuracies of GMLC, BPNN, and SSOM in different simulated input data 

 

 

 
 

 
 

  

Figure 5 Distribution of classification accuracies of GMLC, BPNN, and SSOM in different random training data 
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CONCLUSION 

 

The accuracy of three classifiers including the GMLC, BPNN, and SSOM are evaluated in this research. Two 

experiments consist of the comparative evaluation of the GMLC, BPNN, and SSOM with different simulated input 

data and different random selecting training data. The experiment utilizes 500 different simulated input datasets, 

while the second experiment uses 500 different training datasets. The results demonstrate that the SSOM achieves 

more meaningful classification results than those obtained from the GMLC and BPNN for both experiments. In 

addition, the results of visual interpretation reveal that the areas of mix pixels affect the possibility of accuracy in 

all methods with high variation in classification accuracy. It implies that it should be concerned for classification in 

heterogeneous areas. With the robust architecture and effective learning process, the SSOM is able to provide stable 

results with only a small variation in classification accuracy. 
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