

 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the International Astronautical Federation. All rights reserved.

IAC-14- B6.2.5 Page 2 of 9

Fig II: During a lengthy interplanetary mission, a

crew member interacts with an autonomous

intelligent on-board computer assistant.

Technology malfunction is important to the story-

line, so we must believe the system is infallible.

Great care and attention has been spent on effects

that are credible even on close examination

Fig III: An operator sits at a touch-enabled

multimedia mission console which supports her to

plan the targets and deployment of deadly robotic

drones.

Fig IV: The interface supports audio and video

communication with colleagues, maps, list of

available resources, localised weather, time of

sunrise and sunset.

The ultimate goal of a movie is clear: to move the

story forwards in a short time, while engaging the

audience. Very often when we look closely at stills

from a movie, we see that the illusion would not last

more than a few seconds. But we also see inspiration

and imagination. A real, usable mission control

system interface has to be used continuously from day

to day, for a useful purpose.

Whatever our reaction to these scenes, when we

examine them closely, we see that the amazing

visuals are developed with the best available care,

talent, imagination and budget for one goal: to

support the story line. In the same way we have to

approach real-life interface development with focus

on the key question: “How will we help the operator

do his or her job?”

PUBLIC ENGAGEMENT

To generate public and political support even the

most conservative of agencies understand that looking

cool is something they have to consider. The genuine

excitement of their missions has to be conveyed to a

public expecting the latest advanced technology.

They invest heavily in their web and other media

presence. The reality does not always match the

appearance, as illustrated below:

Fig V: ESOC Main Control Room. Despite

appearances, the wall displays are mainly static

illuminated posters, and the touch enabled tablet

devices mounted on the operator consoles are only

used for diary, contacts and email. The actual

spacecraft control user interface is antiquated

OVERCOMING OBSTACLES

We could ask why so many mission control

systems in use today seem so old-fashioned? It has

become especially obvious in recent years, because of

the appearance of smart phones and tablet devices.

There are no simple reasons but it is worthwhile to

understand them, because they apply in a much wider

context to the space industry.

Market Size

For mobile devices, we see products aimed at an

audience of tens or hundreds of millions. The product

interface is also a platform for additional information

products; apps, games, music, movies, and

advertising. The sensors of the device such as self-

location are used by open-ended applications that can

generate additional revenue for the developers even if

the end user pays little or nothing.

 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the International Astronautical Federation. All rights reserved.

IAC-14- B6.2.5 Page 3 of 9

By contrast the spacecraft ground control system

is typically a one-off relatively high value purchase

made by one of a few hundred institutions around the

world, each of whom employ a small engineering and

operations team. While there is a demand for add-ons,

and extensions, this is not on the same scale, and the

end user would like to avoid costs by implementing

some of them himself.

Political Environment

Historically, complete space systems have been

developed with a very high input from Government

Agencies, both in funding and technical control.

While such support is an excellent way to incubate a

fledgling industry, there comes a stage of maturity

when both taxpayers and industry would be better

served by a market- and demand- oriented approach.

Developments should be initiated by companies at

their own risk to steal advantage over their

competitors. Industry- initiated projects have a higher

impetus for return on investment, and because of this

pressure, usually have a much faster time to market.

It is increasingly recognised, especially by

newcomers to the space business, that a transition

from government-led to industry-led approach is

inevitable.

Engineering Conservatism

The government-funded approach tends, over a

long period, to foster a highly conservative,

compliance-based, risk-averse engineering culture.

Engineers are also sometimes guilty of disguising

complacency as technical judgement, for example by

saying “user interface is not important if the

underlying system is right”. On the contrary, a poor

user interface can render a good system unusable.

A very typical development approach is to defer

user interfaces until the end of a project, while

focussing on kernel performance and functionality.

This is risky; it can be discovered far too late that

getting information out of the system, and visible to

the user, is somehow too expensive!

Prediction and Priorities

Fortunately, we can break out of the limited-

market, government funding traps; technology has

improved to the point where we do not need vast

development budgets. The possibilities evolve over

time, so a challenging development today could be

perfectly feasible one year from now. Planning to

defer a feature based on solid predictions that it will

be much easier in the near future is not lazy or

complacent, it is perfectly justifiable. In the meantime

we can spend resources on something else.

All organisations have limited resources and have

to prioritise to where they are most needed, what is a

worthwhile development today, and what has a

chance to generate a return on investment in

reasonable time.

THE VISION

The GISTDA and Terma vision used inspiration

from science fiction movies, long heritage in flight

operations and software development. We took a

completely fresh look at technologies available today

at reasonable cost, and evaluated how that could be

integrated with our modern flight operations kernel.

In this we found that being relatively small and

agile organisations was a distinct advantage.

TECHNOLOGY CHOICE: QT & QML

Our main technology choice was “Qt Meta

Language” (QML). This choice was an evolution

from our previous choice of Qt for our underlying

spacecraft monitoring kernel, CCS5. Qt and QML are

obviously easy to integrate in the same software.

Qt was previously chosen by Terma B.V. for a

variety of reasons, mainly: portability and

performance. We also had a preference to rely on

only one main external library with clear support and

license conditions.

QML

QML is a language supported by the “Qt Quick”

module of Qt designed to support scripted user

interfaces in a modern smoothly-animated touch-

enabled style. It is portable to embedded devices as

well as Windows, Linux and MacOS and recently

extended to iOS and Android. High graphical

performance is assured by use of OpenGL in ES or

desktop editions, and it is allowed to embed OpenGL

shaders directly in a QML script.

Fig VI: QML particles and shader demos

The QML language is descriptive rather than

imperative; we encode what we want to see. This

creates a clean separation between the description of

what we want to see, and the way underlying data is

acquired and processed.

In QML we bind the state of the user interface to

data values that may change. If the bound data

changes, the user interface is automatically updated,

with transitions if desired. Ideally, a QML user

interface can be written without any imperative code.

It is allowed to incorporate call-back functions in

JavaScript syntax, but the files are definitively not

JavaScript.

The QML classes include layout classes for

automatically arranging data across the available

space, this includes grids and arbitrary geometric

paths.

 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the International Astronautical Federation. All rights reserved.

IAC-14- B6.2.5 Page 4 of 9

Fig VII: A simple path demo script showing the

planets and a scripted shader demonstration

QML Plugins

QML has a number of interesting add-on plugins,

for example, WebKit allows embedded web content,

Qt Charts supports simple charts, there is support for

mapping XML structures to visual objects, and if

desired, a set of standard UI components that look

like conventional user interface objects.

The Qt3D (experimental) plugin allows simple

animated presentation of 3D objects. This is

interesting for space applications because it allows

the assignment of a 3D model ”mesh” to a QML

object and then to animate using bindings. Obviously

these can include simple representations of the

spacecraft or subsystem structures. We found it

especially interesting because we did not have to

make major investments in 3D modelling: it was

possible to download or export 3D models from the

free version of Sketchup.

Fig VIII: An embedded web viewer using Qt

WebKit, and a trivial Qt3D animation from telemetry

Note: Qt3D should not be considered equivalent

to sophisticated 3D modelling provided by game

engines, and in the version we prototyped it still has

some minor issues (see “Alternatives to QML” and

“Lessons Learned” below).

System Integration

To animate QML user interfaces with spacecraft

related data, we had to implement custom classes and

expose them to QML. These equate to the classes in

the underlying control system, such as telemetry

parameters, or mission database, or archive database

objects. These classes had to be developed and

documented as QML extensions to the underlying

kernel. One of the main advantages it that the

information being animated is directly held in

memory in Qt objects, and the Qt Quick integration

allows bindings to be set up with the properties of

arbitrary Qt objects.

Alternatives to QML

Game engines were considered, either instead of

or complementary to QML. The game engines

considered were Unity3D and Unreal, with Scaleform

as 3D development tool. Not surprisingly they were

vastly superior for development, modelling and

animation of full 3D environments, however the

method of data exchange with the underlying kernel

would have required heavy investment or clumsy

integration. If game engines will be considered in

future it is more likely to be for public exhibition type

of displays.

Fig IX: User interfaces using Scaleform with

Unity3D

Windows Presentation Foundation (WPF) was

also considered, but rejected partly because it is

completely Windows oriented, whereas QML is

portable to other platforms. The VOSSCA

development proceeded with QML.

ANALYSIS APPROACH

The project started with a systematic User

Experience (UX) approach. This takes human

behaviour, organisational hierarchies, relationships

and technology factors into account to compose the

best User Experience.

It became evident that the system interface was

not only relevant to the user of the system but also to

visitors, as the system serves as a tool for outreach.

The VOSSCA goals were set to include:

(1) Include both 2D and 3D synoptic displays

(2) Allow commanding from a Mission Control

Dashboard

(3) Interface to pass scheduling to include both

activity as well as telecommand management

(4) Operator schedule monthly and daily

schedule management with notification

capabilities.

(5) Report and data visualization module for

analysis of satellite system data trends.

(6) Incorporate one or other novel user interface

device

Storyboard Composition

Sequences of user actions can be analysed and

converted into a “story” which summarises the

sequence in a set of rough pictures, and allows it to be

 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the International Astronautical Federation. All rights reserved.

IAC-14- B6.2.5 Page 5 of 9

discussed, analysed and modified before it is

implemented. This is obviously an approach inherited

from movie production.

The VOSSCA project was preceded by an

Operational Process Study (OPS), which performed

some simple story-boarding, an excerpt of which is

shown in the following figure:

Fig X: Story-board showing the start of a satellite

pass

The suitability of this approach depends on the

cost multiplier between detailed design and

implementation. Producing a detailed storyboard for a

several scenarios can be expensive. If the technology

used and the developers are able to rapid prototype

different scenarios on a real device, then it is more

cost effective to develop a number of user interface

prototypes, select the best ones, and then improve

them in a series of iterations. The QML scripting

language is amenable to this iterative prototyping

approach.

User Interviews versus Observation

Listening to, and collecting user input and

opinions about their typical tasks is an important

aspect of the analysis. However it is important to be

aware of the potential pitfalls of this approach! These

stem from the fact that the operators are only human.

Quite often a verbal or written description of how

operators use a system does not match what they

actually do! They do not intend to mislead, but they

are sometimes only relating whatever is foremost on

their mind at the time of the interview; a problem they

had specifically that morning for example. This can

result in distorted priorities.

Some operators are extremely focussed on a

specific irritation of the system they currently use.

For example “I would like to increase the size of the

font in this log window”. While it is useful to collect

this kind of input, this is often not specifically useful

or relevant for the new system, for example if the

window does not exist in the new system at all.

 We must also be aware that not all spacecraft

operators are natural innovators. They may be able to

relate accurately what they do. They may also lack

insight or imagination as to how they could do it

better. Recall that the best user interfaces were not

designed by asking a focus group how they would

like their systems to be in future.

Simple observation and recording, with the

occasional question, while a user goes about their

normal job may be the best way to collect accurate

information about the true user interaction sequence.

Direct Measurement

It is also possible to directly measure user interactions

with eye-tracking, that measures which parts of the

screen the user pays most attention to. This has the

advantage of eliminating bias or prejudice of the

developer from measuring the effectiveness of the

interface. This approach is often used to measure the

effectiveness and usage patterns of major web sites,

especially ones that contain advertising. It will feature

increasingly on tablets and smart phones, but due to

the small scale of the project, has not been used in the

VOSSCA project so far.

IMPLEMENTATION

We needed to separate our implementation into

two different types of display, standard and mission-

specific.

Standard Parameter Displays

With standard displays we wanted to provide a

common way to view sets of data such as telemetry

parameters that would look and feel familiar in all

missions where our system was used. We also

wanted to make sure our new system supported at

least the complete equivalent of what was available in

historical systems.

In effect we wanted to give the system a new

“house style”. If the end user does not have the time

or resources to develop their own mission-specific

QML, a pleasant and modern-looking default

interface had to be available, that could do a little

more than the traditional displays could.

 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the International Astronautical Federation. All rights reserved.

IAC-14- B6.2.5 Page 6 of 9

Fig XI: Top level and detailed views of telemetry

parameter status, with focus on parameters in

alarm

These generic displays are modelled roughly after

the functionality and some aspects of the appearance

of historical systems, but using the features available

in a modern library as well as dynamism. The look-

and-feel was based loosely on Windows Phone and

“Metro” themes.

The generic views present telemetry in a mission-

neutral way, so simply lay out rows of grouped

parameters in summary or detail. A tabbed window

can be maximized to fill up the current screen, and

the user can tap or can swipe horizontally between

different tabs. There are no scroll-bars as such,

instead the user swipes the view. To focus on a

particular group the user taps on the display, and it

flips over to show more detail. Importantly the system

overview summarises any alarms at a lower level, so

the user is guided in advance to a subsystem where

there is a potential problem.

Unlike previous systems we support dynamic on-

the-fly definition of new displays, the user merely has

to drag & drop a parameter or group of parameters

from another display to create a new display. If saved,

these new displays become part of the user’s own

personal display list.

Fig XII: Animated 2D schematics, a synoptic picture

display and SVG map showing orbit track

The system also integrates the traditional synoptic

picture animation system, so it is possible to click on

different 2D schematics showing animated status in

the traditional way. The new system improves on the

traditional one by supporting completely dynamic

scaling using pinches and touch interaction to tap

between different pictures.

Mission Custom Displays

Mission custom displays are scripts developed for

a specific mission; for example this might include

images of a spacecraft itself or a dedicated layout of

animated telemetry parameters for the specific

mission.

Fig XIII: Custom QML displays for the THEOS1

satellite

These custom displays can be called up from the

standard display or, if desired, can be used to

completely replace the standard displays. In this case

however the mission is completely free to implement

their own style.

 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the International Astronautical Federation. All rights reserved.

IAC-14- B6.2.5 Page 7 of 9

NOVEL USER INPUT METHODS

The use of innovative input methods is part of the

GISTDA vision for VOSSCA, and so we explored

several options outlined here.

Domain-Specific Safety Concerns

Safety, criticality and protection of a satellite are

paramount in space operations, so it is especially

important to prevent mistaken or inaccurate user input

from causing damage to a spacecraft. The potential

limitations of each type of device were considered.

While motion sensing devices may not be accurate

enough for direct spacecraft operations, the

possibilities for contact-free user interaction may be

well-suited for public displays.

Collecting user input is a compromise between

accuracy, expressiveness and leaving the user free of

encumbrances or extra equipment, to express himself

precisely in the most natural way.

Touch Screen versus Mouse

Our most obvious input change has been to allow

touch-enabled user input. Note that keyboard and

mouse should not be too-quickly dismissed as old-

fashioned! A mouse allows us to control user

interfaces accurately and with buttons, allow different

means of expression.

We tested using first generation Windows Surface

Pro 2 tablet PC and using conventional Dell desktop

PC’s with 27” Dell touch-screen monitors. In the

latter case the touch input is detected via a USB

connector. Both configurations used Windows

8.1.This demonstrated quite well the kind of issues

that can be seen when transferring between devices

with different physical sizes and different resolutions.

Screen Resolution

On-screen virtual buttons, where the user can tap

by fingertip, must be big enough to be sure that the

correct button has been clicked or tapped. There are

many variables - not only the device input and output

resolution, but also the size of the fingertip.

We can also fall into unforeseen traps when

developing for different touch screens. A mouse

moves on a different surface with a different scale for

the mouse motion. With a touch screen, the hand

must physically move to the point of input and then

tap. If we design a user interface with a button at the

top right, very easy to reach on a small tablet screen,

on a 40” touch-enabled surface, the user has to lean

an uncomfortable distance to hit the same button.

While it is possible to write device and resolution-

independent QML it is very easy to forget, and costs

some additional effort; these issues can only be fully

rooted out by testing on the final target device.

Mobile Device as Remote Controller

One solution can be to use a tablet as a local

control device for one or more wall-mounted

displays. In the simplest approach this can be set up

by simply connecting a wall-mounted monitor to the

tablet HD connector, and working in duplicated

screen mode. Otherwise more sophisticated desktop

sharing software is required.

Fig XIV: Tablet as input device

Motion Detection

Two types of motion detection were investigated

Kinect and Leap Motion. Both are available at very

moderate cost.

Fig XV: Kinect (left) and Leap Motion (right)

Kinect

This is a full-body motion sensor originally

developed as a game controller for XBOX. The user

is expect to be at a distance. It can be used in near

mode for half-body detection at 70cm to 1m, and 2-

3m for full body motion detection. To use Kinect at a

suitable distance from the screen, all objects on the

screen must have sufficient size to be visible; this

means that such a display has to be explicitly

designed for this kind of use. For these reasons,

Kinect may be suited for public display but is not

suited for direct use by a mission control operator.

Leap Motion

This system was invented for air-gesture

interaction with personal computers while sitting in

front of the screen. The device is set up just in front

of the PC. Leap is in theory able to detect relatively

fine gestures and individual fingers. The active range

 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the International Astronautical Federation. All rights reserved.

IAC-14- B6.2.5 Page 8 of 9

was about 1 cubic foot around the device. It can

detect some virtual gestures: circle, swipe, and tap

Fig XVI: Leap Motion Gesture Detection

Leap Motion comes with software to allow the

device to emulate a computer mouse, but this does not

support complex gestures. There are some early-stage

developments to enable the full range of gestures to

be detected in QML, for example the library QLeap.

In our experiments we found that Leap Motion

seemed (at the time) to be an immature product. It

was difficult to avoid inadvertent gestures from being

picked up, and some intended gestures were were not

interpreted accurately. Again, we encountered some

unexpected issues: if the user leaned over the device,

perhaps to look closely at a screen, parts of the face or

head were detected!

We suspect that Leap Motion has matured

somewhat as a product since our testing one year ago,

and we may examine it again in future.

Speech & Voice Control

 For the sake of completeness we mention the

possibility of control using spoken commands. The

goal would be to teach the system to recognise a

limited number of voice commands, to check with the

user whether the interpretation is correct, and then

execute the command, perhaps by initiating a specific

automation sequence.

We do not plan any explicit development, since

this appears to be better supported by standard

operating system tools such as Windows SAPI.

LESSONS LEARNED

The choice of QML seems to have been a good

one, although it is not completely free of issues.

Especially with the Qt3D plugin (which is explicitly

stated to be experimental and subject to change) we

have found issues for example the scene will only

render correctly if it is the first QML file opened.

We have noticed that many issues are reported

solved in Qt5.3 (we developed for Qt5.1) and so they

may be solved by a simple upgrade. At the same time,

Qt5.3 offers the possibility to deploy for Android and

iOS, so there is a further impetus to upgrade.

It is all-too-easy to forget physical ergonomic

issues when given access to a new display technology

or novel input method. Also, if the development

device differs even slightly from the deployment

device, unforeseen issues often occur. It is also very

easy to forget that humans come in different shapes

and sizes as well as hardware.

It is absolutely essential for novel user interfaces

to go through a cycle of development, trial with real

users on the real deployment device, feedback

followed by adjustments and improvements.

PROOF OF CONCEPT

It was decided in July 2014 to perform a live

satellite verification test – to operate the THEOS-1

satellite in orbit from the VOSSCA system – both in

terms of command and control.

During a pass of the satellite over our ground

station the control was switched from the existing

system to the VOSSCA system and the spacecraft

was operated without error.

This proves that we have fulfilled the first

objective, of creating a control system which can

replace our existing system.

FURTHER DEVELOPMENTS

The VOSSCA project so far succeeded in the

objectives to demonstrate impressive modernized

graphical user interfaces, with touch screen

interaction. The complete system was also able to

demonstrate that it could take over control of the

THEOS1 satellite.

In the longer term we must admit that the new

QML implementation does not provide a fully

immersive end-to-end user experience; for example

all commanding is initiated via automated sequences

instead of directly. This is an ongoing development

that will need a number of iterations.

Qt5.3 has become available during the project,

and this provides support for Android and iOS

devices. Remote apps on these platforms could be

explored.

Although the 3D display is workable, the Qt3D

module is experimental and is not robust; this could

be revisited using Qt5.3, or by introducing a game

engine (with corresponding data exchange)

At the time of study, the Leap Motion product was

somewhat immature and disappointing, we suspect

that this has since improved, and should revisit it.

There has been some serious discussion about

making a physical operator console similar to the one

seen in Fig III.

Images are for educational purposes only,

courtesy ESA, Time Warner, Universal Pictures,

Marvel Studios, Leap Motion, Digia, Google, Excy.

None of these organizations are affiliated with

Terma, nor does use of these images imply any

endorsement

 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the International Astronautical Federation. All rights reserved.

IAC-14- B6.2.5 Page 9 of 9

